| 研究生: |
林志翰 Lin, Chih-Han |
|---|---|
| 論文名稱: |
應用於燃料電池之高升壓比轉換器效率分析 Efficiency Analysis of High Step-up DC-DC Converter for Fuel Cell System |
| 指導教授: |
張簡樂仁
Chang-Chien, Le-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 燃料電池系統 、高升壓比轉換器 、軟切 、錯相 |
| 外文關鍵詞: | Fuel cell system, High step-up converter, Soft switching, Interleaving |
| 相關次數: | 點閱:143 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在分散式電源系統中,再生能源的間歇性和不穩定性可透過由基載和儲能裝置組成的備援系統來改善。燃料電池很適合作為基載系統,只要不斷提供燃料就可以無汙染地一直持續發電,然而燃料電池的電壓很低且響應速度慢,因此必須在燃料電池和直流匯流排(DC-Bus)間加上一個高升壓比轉換器進行升壓和功率調節。將近30倍的高升壓比對轉換器的設計是一項考驗,本文以效率提升的觀點研究四種高升壓比轉換器架構,在切換頻率為18 kHz和100 kHz下分別去比較。本研究主要是以電流饋入式全橋轉換器為比較基準,加入軟切和錯相去進一步提升效率並抑制電壓突波。本文詳述在相同規格下比較四種架構操作在兩種不同切換頻率的效率,模擬和實驗結果證實文中所提出方法在提升效率上的可行性。實驗結果顯示250 W之錯相主動箝位電流饋入式全橋轉換器與其它三種架構的100 kHz轉換器相比,在全負載範圍都有較高的效率,其效率最高可達94.86%。
The intermittency and instability of the renewable sources in the distributed power system can be addressed with the backup supply consisting of the base-load and storage system. The fuel cell is suitable to serve as the base-load system to output unlimited energy without pollution if the fuel is provided continuously. However, the fuel cell has slow response and low voltage. A high step-up DC-DC converter with the proper design is required to interface the fuel cell to the DC-Bus. The converter design of the high step-up ratio (30x) is challenging. In this work, studies on efficiency improvement of four high step-up DC-DC converter topologies with the operating frequency of 18 kHz and 100 kHz are investigated. Soft switching and interleaving approaches are applied to the current-fed full bridge converter to achieve efficiency improvement and voltage spike suppression. This thesis details efficiency comparison of the four topologies at high and low switching frequency. Simulation and experimental results validate efficacy of these two approaches. It shows that the 250 W 100 kHz interleaved active clamp current-fed full bridge converter with a voltage doubler has higher efficiency than the other three 100 kHz converters within the full load range. The maximum efficiency can reach 94.86%.
[1] M. Jang and V. G. Agelidis, "A minimum power-processing-stage fuel-cell energy system based on a boost-inverter with a bidirectional backup battery storage," IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1568-1577, May 2011.
[2] X. Huang, Z. Zhang, and J. Jiang, "Fuel cell technology for distributed generation: An overview," in Proc. IEEE ISIE, 2006, pp. 1613-1618.
[3] M. C. Péra, D. Candusso, D. Hissel, and J. M. Kauffmann, “Power generation by fuel cells,” IEEE Ind. Electron. Mag., vol. 1, no. 3, pp. 28-37, Oct. 2007.
[4] S. Curtin and J. Gangi, Fuel cell technologies market report 2015 [Online]. Available: https://energy.gov/sites/prod/files/2016/10/f33/fcto
_2015_market_report.pdf, Aug. 2016.
[5] A. Heinze, C. Hebling, M. Müller, M. Zedda, and C. Müller, "Fuel cells for low power applications," Journal of Power Sources, vol. 105, issue 2, pp. 250-255, Mar. 2002.
[6] P. Sethakul, S. Rael, B. Davat, and P. Thounthong, “Fuel cell high-power applications,” IEEE Ind. Electron. Mag., vol. 3, no. 1, pp. 32-46, Mar. 2009.
[7] J. i. Itoh and F. Hayashi, "Ripple current reduction of a fuel cell for a single-phase isolated converter using a DC active filter with a center tap," IEEE Trans. Power Electron., vol. 25, no. 3, pp. 550-556, Mar. 2010.
[8] EPARC, 電力電子學綜論 第二版, 全華圖書股份有限公司, 2013。
[9] A. Averberg and A. Mertens, "Analysis of a voltage-fed full bridge DC-DC converter in fuel cell systems," in Proc. IEEE PESC, 2007, pp. 286-292.
[10] 張凱傑, "以燃料電池做微電網基載備援之研究," 碩士論文, 電機工程學系, 國立成功大學, 2013。
[11] L. Zhu, "A novel soft-commutating isolated boost full-bridge ZVS-PWM DC-DC converter for bidirectional high power applications," IEEE Trans. Power Electron., vol. 21, no. 2, pp. 422-429, Mar. 2006.
[12] U. R. Prasanna and A. K. Rathore, "Analysis and design of zero-voltage-switching current-fed isolated full-bridge DC/DC converter," in Proc. IEEE PEDS, 2011, pp. 239-245.
[13] K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, and J. S. Lai, "Bi-directional DC to DC converters for fuel cell systems," in Proc. IEEE PET, 1998, pp. 47-51.
[14] R. Watson and F. C. Lee, "A soft-switched, full-bridge boost converter employing an active-clamp circuit," in Proc. IEEE PESC, 1996, pp. 1948-1954.
[15] C. Iannello, Shiguo Luo and I. Batarseh, "A full bridge ZCS PWM converter for high voltage and high power applications," in Proc. IEEE PESC, 2000, pp. 1064-1071.
[16] 李忠倫, "再生能源發電備援系統之能源管理策略," 碩士論文, 電機工程學系, 國立成功大學, 2015。
[17] P. Li, "Energy storage is the core of renewable technologies," IEEE Nanotechnology Mag., vol. 2, no. 4, pp. 13-18, Dec. 2008.
[18] M. Rahman, S. Paul, and R. Riadh, " Study of 1.26 kw - 24 VDC proton exchange membrane fuel cell's (PEMFC'S) parameters output behaviour: composition & temperature," ECIJ, vol. 4, no. 3, Sep. 2015.
[19] I. Sadli, P. Thounthong, J.-P. Martin, S. Raël, and B. Davat, "Behaviour of a PEMFC supplying a low voltage static converter," Journal of Power Sources, vol. 156, issue 1, pp. 119-125, May 2006.
[20] W. ChoiP. N. EnjetiJ. W. HowzeG. Joung, "An experimental evaluation of the effects of ripple current generated by the power conditioning stage on a proton exchange membrane fuel cell stack," Journal of Materials Engineering and Performance, vol. 13, issue 3, pp 257-264, Jun. 2004.
[21] P. Thounthong, S. Raël, and B. Davat, “Supercapacitors as an energy storage for fuel cell automotive hybrid electrical system,” International Journal of Electrical Engineering in Transportation, vol. 1, no. 1, pp. 21-25, Jan. 2005.
[22] Dr. Dušan Graovac, Marco Pürschel, and Andreas Kiep, "MOSFET Power Losses Calculation Using the Data-Sheet Parameters," Application Note, vol 1.1, Jul. 2006.
[23] 趙修科, 開關電源中磁性元器件, 南京航空航天大學自動化學院, 2004。
[24] Zhang and Michael Tao, "Electrical, Thermal, and EMI Designs of High-Density, Low-Profile Power Supplies," Dissertation, Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 1998.
[25] C. Blake, D. Kinzer, and P. Wood, "Synchronous rectifiers versus Schottky diodes: a comparison of the losses of a synchronous rectifier versus the losses of a Schottky diode rectifier," in Proc. IEEE APEC, 1994, pp. 17-23.
[26] 原田耕介, 新型柔性切換式電源技術入門, 全華科技圖書股份有限公司, 2003。
[27] Muhammad H. Rashid, Power Electronics handbook third edition, Butterworth-Heinemann, 2010.
[28] Raymond A. Mack Jr., Demystifying switching power supplies, Elsevier, 2008.
[29] R. T. Naayagi and A. J. Forsyth, "Bidirectional DC-DC converter for aircraft electric energy storage systems," in Proc. IEEE PEMD, 2010, pp. 1-6.
[30] X. Kong, L. T. Choi and A. M. Khambadkone, "Analysis and control of isolated current-fed full bridge converter in fuel cell system," in Proc. IEEE IECON, 2004, pp. 2825-2830.
[31] Texas Instruments, "SM320F28335-HT Digital signal controller (DSC) data manual," 2010.