| 研究生: |
吳尚興 Wu, Shang-Shing |
|---|---|
| 論文名稱: |
在太陽光及可見光驅動下以氧化石墨烯光催化還原六價鉻 Renewable Sunlight- or Visible Light-Driven Reduction of Hexavalent Chromium Photocatalyzed by Graphene Oxide |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 光催化反應 、氧化石墨烯 、六價鉻 、廢水處理 、永續利用 |
| 外文關鍵詞: | Photocatalysis, Graphene oxide, Hexavalent chromium, Wastewater treatment, Sustainability |
| 相關次數: | 點閱:123 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們提出了一種快速的方法,利用太陽光或是可見光,以氧化石墨烯(GO)作為光催化劑將毒性很高且具有致癌性的六價鉻[Cr (VI)]還原成三價鉻[Cr (III)]。GO是一種新興且二維的奈米材料,組成的元素在地球上都很豐富。光催化是一種具有吸引力且相對簡單的方法,它將毒性很高的Cr (VI)還原成毒性更低的Cr (III)。與傳統方法相比,減少了許多廢棄污泥的產生,以及排放到環境中的影響。本研究的目的是探索GO將Cr (VI)光催化還原成Cr (III)的能力。結果顯示GO可以有效地在30分鐘內光催化還原六價鉻(0.32 mM)。草酸鹽作為電子提供者可以顯著地加速光催化反應,而且在化學計量比中草酸鹽與Cr (VI)的比例約為1.5,也就是一個分子的草酸會提供兩個電子還原Cr (VI)。在光還原Cr (VI)的過程中會抑制過氧化氫(H2O2)的生成,因為在GO的光催化反應中氧氣與Cr (VI)會有搶奪光電子的情況,此外在此篇研究中還將介紹pH值、電子提供者,氧氣扮演的角色,鉻的質量平衡以及實驗最佳化的參數等等。
We present a new, rapid method to photocatalytically reduce the highly toxic hexavalent chromium [Cr (VI)] to relatively non-toxic trivalent chromium [Cr (III)] by graphene oxide (GO) photocatalyst using renewable sunlight or visible light. GO is an emerging two-dimensional nanomaterial consisting of earth-abundant elements. The new method is an attractive and relatively simple method, as it photoreduces toxic Cr (VI) with minimized sludge generated comparing to conventional reduction and precipitation processes, leaving reduced environmental footprints. We found that GO can efficiently photocatalyze the reduction of Cr (VI) (0.32 mM) in 30 min. Oxalate as an electron donor can significantly accelerate the photoreduction and the stoichiometric ratio of oxalate to Cr (VI) is about 1.5. The photoreduction of Cr (VI) inhibits the photoproducton of H2O2, a process that involves photoelectron reduction of O2 in GO photocatalysis. The effects of pH and electron donors, O2 level, a mass balance disclosure of Cr transformation and optimization will also be presented.
(1) Tchounwou, P. B.; Yedjou, C. G.; Patlolla, A. K.; Sutton, D. J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer Basel: Basel, 2012; Vol. 101, pp 133–164.
(2) Eary, L. E.; Rai, D. Chromate Removal from Aqueous Wastes by Reduction with Ferrous Ion. Environ. Sci. Technol. 1988, 22 (8), 972–977.
(3) Yurik, T. K.; Pikaev, A. Radiolysis of Weakly Acidic and Neutral Aqueous Solutions of Hexavalent Chromium Ions; 1999; Vol. 33.
(4) Richard, F. C.; Bourg, A. C. M. Aqueous Geochemistry of Chromium: A Review. Water Res. 1991, 25 (7), 807–816.
(5) Chromium in Drinking Water | Chromium in Drinking Water | US EPA https://archive.epa.gov/water/archive/web/html/index-5.html (accessed Mar 16, 2018).
(6) Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization, Ed.; World Health Organization: Geneva, 2011.
(7) Kirpnick-Sobol, Z.; Reliene, R.; Schiestl, R. H. Carcinogenic Cr(VI) and the Nutritional Supplement Cr(III) Induce DNA Deletions in Yeast and Mice. Cancer Res. 2006, 66 (7), 3480–3484.
(8) Santonen, T.; Zitting, A.; Riihimäki, V.; Howe, P. D. Inorganic Chromium(III) Compounds; Concise international chemical assessment document, 76; World Health Organization: Geneva, Switzerland, 2009.
(9) Barrera-Díaz, C. E.; Lugo-Lugo, V.; Bilyeu, B. A Review of Chemical, Electrochemical and Biological Methods for Aqueous Cr(VI) Reduction. J. Hazard. Mater. 2012, 223–224, 1–12.
(10) Grosse, D. W. Treatment Technologies For Hazardous Wastes: Part IV A Review of Alternative Treatment Processes for Metal Bearing Hazardous Waste Streams. J. Air Pollut. Control Assoc. 1986, 36 (5), 603–614.
(11) Mohapatra, P.; Samantaray, S. K.; Parida, K. Photocatalytic Reduction of Hexavalent Chromium in Aqueous Solution over Sulphate Modified Titania. J. Photochem. Photobiol. Chem. 2005, 170 (2), 189–194.
(12) Ku, Y.; Jung, I.-L. Photocatalytic Reduction of Cr(VI) in Aqueous Solutions by UV Irradiation with the Presence of Titanium Dioxide. Water Res. 2001, 35 (1), 135–142.
(13) Testa, J. J.; Grela, M. A.; Litter, M. I. Heterogeneous Photocatalytic Reduction of Chromium(VI) over TiO 2 Particles in the Presence of Oxalate: Involvement of Cr(V) Species. Environ. Sci. Technol. 2004, 38 (5), 1589–1594.
(14) Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-Based Semiconductor Photocatalysts. Chem Soc Rev 2012, 41 (2), 782–796.
(15) Li, N.; Liu, G.; Zhen, C.; Li, F.; Zhang, L.; Cheng, H.-M. Battery Performance and Photocatalytic Activity of Mesoporous Anatase TiO2 Nanospheres/Graphene Composites by Template-Free Self-Assembly. Adv. Funct. Mater. 21 (9), 1717–1722.
(16) Zhang, X.-Y.; Li, H.-P.; Cui, X.-L.; Lin, Y. Graphene/TiO2 Nanocomposites: Synthesis, Characterization and Application in Hydrogen Evolution from Water Photocatalytic Splitting. J. Mater. Chem. 2010, 20 (14), 2801–2806.
(17) Ng, Y. H.; Iwase, A.; Kudo, A.; Amal, R. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. J. Phys. Chem. Lett. 2010, 1 (17), 2607–2612.
(18) Fan, W.; Lai, Q.; Zhang, Q.; Wang, Y. Nanocomposites of TiO2 and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution. J. Phys. Chem. C 2011, 115 (21), 10694–10701.
(19) Ng, Y. H.; Iwase, A.; Bell, N. J.; Kudo, A.; Amal, R. Semiconductor/Reduced Graphene Oxide Nanocomposites Derived from Photocatalytic Reactions. Catal. Today 2011, 164 (1), 353–357.
(20) Williams, G.; Seger, B.; Kamat, P. V. TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide. ACS Nano 2008, 2 (7), 1487–1491.
(21) Yuan, W.; Chen, J.; Shi, G. Nanoporous Graphene Materials. Mater. Today 2014, 17 (2), 77–85.
(22) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The Chemistry of Graphene Oxide. Chem Soc Rev 2010, 39 (1), 228–240.
(23) Krishnamoorthy, K.; Mohan, R.; Kim, S.-J. Graphene Oxide as a Photocatalytic Material. Appl. Phys. Lett. 2011, 98 (24), 244101.
(24) Yeh, T.-F.; Syu, J.-M.; Cheng, C.; Chang, T.-H.; Teng, H. Graphite Oxide as a Photocatalyst for Hydrogen Production from Water. Adv. Funct. Mater. 2010, 20 (14), 2255–2262.
(25) Hsu, H.-C.; Shown, I.; Wei, H.-Y.; Chang, Y.-C.; Du, H.-Y.; Lin, Y.-G.; Tseng, C.-A.; Wang, C.-H.; Chen, L.-C.; Lin, Y.-C.; et al. Graphene Oxide as a Promising Photocatalyst for CO 2 to Methanol Conversion. Nanoscale 2013, 5 (1), 262–268.
(26) Hou, W.-C.; Wang, Y.-S. Photocatalytic Generation of H2O2 by Graphene Oxide in Organic Electron Donor-Free Condition under Sunlight. ACS Sustain. Chem. Eng. 2017, 5 (4), 2994–3001.
(27) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 442 (7100), 282–286.
(28) Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon: A Review of Graphene. Chem. Rev. 2010, 110 (1), 132–145.
(29) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6 (3), 183–191.
(30) Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4 (4), 217–224.
(31) Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene Oxide as a Chemically Tunable Platform for Optical Applications. Nat. Chem. 2010, 2, 1015.
(32) Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24 (19), 10560–10564.
(33) Matsumoto, Y.; Koinuma, M.; Ida, S.; Hayami, S.; Taniguchi, T.; Hatakeyama, K.; Tateishi, H.; Watanabe, Y.; Amano, S. Photoreaction of Graphene Oxide Nanosheets in Water. J. Phys. Chem. C 2011, 115 (39), 19280–19286.
(34) Naimi-Joubani, M.; Shirzad-Siboni, M.; Yang, J.-K.; Gholami, M.; Farzadkia, M. Photocatalytic Reduction of Hexavalent Chromium with Illuminated ZnO/TiO2 Composite. J. Ind. Eng. Chem. 2015, 22, 317–323.
(35) Chakrabarti, S.; Chaudhuri, B.; Bhattacharjee, S.; Ray, A. K.; Dutta, B. K. Photo-Reduction of Hexavalent Chromium in Aqueous Solution in the Presence of Zinc Oxide as Semiconductor Catalyst. Chem. Eng. J. 2009, 153 (1), 86–93.
(36) Zhang, Y.; Chen, Z.; Liu, S.; Xu, Y.-J. Size Effect Induced Activity Enhancement and Anti-Photocorrosion of Reduced Graphene Oxide/ZnO Composites for Degradation of Organic Dyes and Reduction of Cr(VI) in Water. Appl. Catal. B Environ. 2013, 140–141, 598–607.
(37) Li, J.; Peng, T.; Zhang, Y.; Zhou, C.; Zhu, A. Polyaniline Modified SnO2 Nanoparticles for Efficient Photocatalytic Reduction of Aqueous Cr(VI) under Visible Light. Sep. Purif. Technol. 2018, 201, 120–129.
(38) Liang, R.; Jing, F.; Shen, L.; Qin, N.; Wu, L. MIL-53(Fe) as a Highly Efficient Bifunctional Photocatalyst for the Simultaneous Reduction of Cr(VI) and Oxidation of Dyes. J. Hazard. Mater. 2015, 287, 364–372.
(39) Zhang, Y.; Zhang, Q.; Shi, Q.; Cai, Z.; Yang, Z. Acid-Treated g-C3N4 with Improved Photocatalytic Performance in the Reduction of Aqueous Cr(VI) under Visible-Light. Sep. Purif. Technol. 2015, 142, 251–257.
(40) Zhang, K.; Kemp, K. C.; Chandra, V. Homogeneous Anchoring of TiO2 Nanoparticles on Graphene Sheets for Waste Water Treatment. Mater. Lett. 2012, 81, 127–130.
(41) Cheng, Q.; Wang, C.; Doudrick, K.; Chan, C. K. Hexavalent Chromium Removal Using Metal Oxide Photocatalysts. Appl. Catal. B Environ. 2015, 176–177, 740–748.
(42) Liu, R.; Zhu, X.; Chen, B. A New Insight of Graphene Oxide-Fe(III) Complex Photochemical Behaviors under Visible Light Irradiation. Sci. Rep. 2017, 7, 40711.
(43) Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4 (8), 4806–4814.
(44) Hou, W.-C.; Kong, L.; Wepasnick, K. A.; Zepp, R. G.; Fairbrother, D. H.; Jafvert, C. T. Photochemistry of Aqueous C60 Clusters: Wavelength Dependency and Product Characterization. Environ. Sci. Technol. 2010, 44 (21), 8121–8127.
(45) Hatchard, C. G.; Parker, C. A. A New Sensitive Chemical Actinometer - II. Potassium Ferrioxalate as a Standard Chemical Actinometer. Proc R Soc Lond A 1956, 235 (1203), 518–536.
(46) Urone, P. F. Stability of Colorimetric Reagent for Chromium, s-Diphenylcarbazide, in Various Solvents. Anal. Chem. 1955, 27 (8), 1354–1355.
(47) Schroeder, D. C.; Lee, G. F. Potential Transformations of Chromium in Natural Waters. Water. Air. Soil Pollut. 1975, 4 (3–4), 355–365.
(48) Baga, A. N.; Johnson, G. R. A.; Nazhat, N. B.; Saadalla-Nazhat, R. A. A Simple Spectrophotometric Determination of Hydrogen Peroxide at Low Concentrations in Aqueous Solution. Anal. Chim. Acta 1988, 204, 349–353.
(49) Markiewicz, B.; Komorowicz, I.; Sajnóg, A.; Belter, M.; Barałkiewicz, D. Chromium and Its Speciation in Water Samples by HPLC/ICP-MS – Technique Establishing Metrological Traceability: A Review since 2000. Talanta 2015, 132, 814–828.
(50) Gürleyük, H.; Wallschläger, D. Determination of Chromium(Iii) and Chromium(vi) Using Suppressed Ion Chromatography Inductively Coupled Plasma Mass SpectrometryPresented at the 2001 European Winter Conference on Plasma Spectrochemistry, Lillehammer, Norway, February 4–8, 2001. J. Anal. At. Spectrom. 2001, 16 (9), 926–930.
(51) Konkena, B.; Vasudevan, S. Understanding Aqueous Dispersibility of Graphene Oxide and Reduced Graphene Oxide through PKa Measurements. J. Phys. Chem. Lett. 2012, 3 (7), 867–872.
(52) Tzou, Y. M.; Wang, M. K.; Loeppert, R. H. Sorption of Phosphate and Cr(VI) by Fe(III) and Cr(III) Hydroxides. Arch. Environ. Contam. Toxicol. 2003, 44 (4), 0445–0453.
(53) Wu, X.-Z.; Lingyue, M.; Akiyama, K. Chemiluminescence Study of Active Oxygen Species Produced by TiO2 Photocatalytic Reaction. Luminescence 20 (1), 36–40.
(54) Dalrymple, O. K.; Stefanakos, E.; Trotz, M. A.; Goswami, D. Y. A Review of the Mechanisms and Modeling of Photocatalytic Disinfection. Appl. Catal. B Environ. 2010, 98 (1), 27–38.
(55) Kumar, K. V.; Porkodi, K.; Rocha, F. Langmuir–Hinshelwood Kinetics – A Theoretical Study. Catal. Commun. 2008, 9 (1), 82–84.
(56) Forouzan, F.; Richards, T. C.; Bard, A. J. Photoinduced Reaction at TiO2 Particles. Photodeposition from NiII Solutions with Oxalate. J. Phys. Chem. 1996, 100 (46), 18123–18127.
校內:2023-09-01公開