| 研究生: |
蔡典霖 Tsai, Dian-Lin |
|---|---|
| 論文名稱: |
應用於獵取室內光能之具最大功率點追蹤控制法的低功耗升壓型轉換器 A Low-Power-Consumption Boost Converter with Maximum Power Point Tracking Algorithm for Indoor Photovoltaic Energy Harvesting |
| 指導教授: |
魏嘉玲
Wei, Chia-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 室內光能 、最大功率追蹤 、直流─直流轉換器 、開路電壓法 |
| 外文關鍵詞: | Indoor photovoltaic, Maximum power point tracking, DC-DC Converter, Fractional open-circuit voltage |
| 相關次數: | 點閱:129 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,無線感測網路的技術突飛猛進,惟其運轉生命週期仍受儲能設備限制,因此,若能從環境中獵取能量來供給各個感測器,便可提升運轉生命週期而降低成本。本篇論文提出一應用於獵取室內光能的低功耗升壓型轉換器,其具備應用於光伏電池的最大功率點追蹤技術,藉由調變其功率電晶體之導通時間,控制光伏電池之輸出功率,可使隨照度與環境溫度改變的光伏電池之輸出功率獲得完全的利用,並將獵取之能量儲存於超級電容中。本系統整合於單一晶片中,使用台灣積體電路公司0.18μm 1P6M混合訊號製程製作,面積為853×1006 μm2。系統最佳儲存效率為77.1 %,最佳追蹤效率為64.8 %,最佳總效率為42.8 %。
In recent years, wireless sensor network (WSN) technique develops rapidly, but its operation life is still limited by the energy storage element. Thus, if ambient energy is harvested to supply the sensors, the operation life can be increased and the cost can be reduced. A boost converter for indoor photovoltaic energy harvesting with low power consumption is proposed in this thesis. For harvesting energy from PV cell, the proposed converter applies the maximum power point tracking algorithm, and controls the output power of the PV cell by regulating the conduction time of the power transistors, so that the output power of the illuminance- and temperature-sensitive PV cell is utilized completely. The harvested energy is stored in a super capacitor. The proposed system is integrated into a chip, which was fabricated by using TSMC 0.18μm 1P6M mixed-signal process, and the total area is 853×1006 μm2. The best storage efficiency is 77.1 %, the best tracking efficiency is 64.8 %, and the best total efficiency is 42.8 %.
[1] K. Pister, J. Kahn, and B. Boser, “Smart Dust: Autonomous sensing and communication in a cubic millimeter,” [Online]. Available: http://robotics.eecs.berkeley.edu/~pister/SmartDust/
[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System architecture directions for networked sensors,” ACM SIGPLAN Notices, vol. 35, pp. 93–104, Nov. 2000.
[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, Aug. 2002.
[4] R. D. Prabha, G. A. Rincón-Mora, and S. Kim, “Harvesting circuits for miniaturized photovoltaic cells,” in Proc. IEEE Int. Symp. On Circuit and Syst., May 2011, pp. 309–312.
[5] V. Fthenakis and E. Alsema, “Photovoltaics Energy Payback Times, Greenhouse Gas Emissions and External Costs: 2004-early 2005 Status,” Progr. Photovoltaics: Res. Appl., vol. 14, no. 3, pp. 275–280, May 2006
[6] B, J. Stanbery, “Copper Indium Selenides and Related Materials for Photovoltaic Devices,” Crit. Rev. Solid State and Mater. Sci., vol.27, no. 2, pp. 73–117, Jan. 2002.
[7] M. Grȧtzel, “Perspectives for Dye-sensitized Nanocrystalline Solar Cells,” Progr. Photovoltaics: Res. Appl., vol. 8, no. 1, pp. 171–185, Jan./Feb. 2000.
[8] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 43),” Progr. Photovoltaics: Res. Appl., vol. 22, no. 1, pp. 1–9, Jan. 2014.
[9] W. S. Wang, T. O’Donnel, L. Ribetto, B. O’Flynn, M. Hayes, and C. O’Mathuna, “Energy harvesting embedded wireless sensor system for building environment applications,” in Int. Conf. Wireless VITAE, May 2009, pp. 36–41.
[10] M. G. Villalva, J. R. Gazoli, and E. R. Filho, “Comprehensive approach to modeling and simulation of photovoltaic arrays,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1198–1208, May 2009.
[11] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439–449, Jun. 2007.
[12] A. R. Reisi, M. H. Moradi, and S. Jamasb, “Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review,” Renew. Sust. Energ. Rev., vol. 19, pp. 433–443, Mar. 2013.
[13] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
[14] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-point-tracking controller for photovoltaic energy conversion system,” IEEE Trans. Ind. Electron., vol.48, no.3, pp.594–601, Jun. 2001.
[15] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol.55, no.7, pp. 2622–2628, Jul. 2008.
[16] G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental tests of open-loop maximum-power-point tracking techniques for photovoltaic arrays,” Solar Cells, vol. 13, no. 2, pp. 185–195, Dec. 1984.
[17] A. S. Weddell, G. V. Merrett, and B. M. Al-Hashimi, “Photovoltaic sample-and hold circuit enabling MPPT indoors for low-power systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 6, pp. 1196–1204, Jun. 2012.
[18] A. Pandey, N. Dasgupta, and A. K. Mukerjee, “A simple single-sensor MPPT solution,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 698–700, Mar. 2007.
[19] S. M. Ferdous, M. A. Mohammad, F. Nasrullah, A. M. Saleque, and A. Z. M. S. Muttalib, “Design and simulation of an open voltage algorithm based maximum power pint tracker for battery charging PV system,” in Proc. 7th Int. Conf. Electrical and Computer Engineering (ICECE’12), Dec. 2012, pp. 908–911.
[20] O. Lopez-Lapena and M. T. Penella, “Low-power FOCV MPPT controller with automatic adjustment of the sample & hold,” Electronics Letters, vol. 48, no. 20, pp. 1301–1303, Sep. 2012.
[21] S. Yuvarajan and S. Xu, “Photo-voltaic power converter with a simple maximum-power-point-tracker,” in Proc. 2003 Int. Symp. Circuits Syst., May 2003, vol.3, pp. III-399–III-402.
[22] T. Noguchi, S. Togashi, and R. Nakamoto, “Short-current pulse-based maximum-power-point tracking method for multiple photovoltaic-and-converter module system,” IEEE Trans. Ind. Electron., vol.49, no.1, pp. 217–223, Feb. 2002.
[23] H. H. Wu, “Design of an Adaptive Peak-Inductor-Current Controlled Pulse Frequency Modulated Boost Converter with a Near-Threshold Startup Voltage,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July. 2012.
[24] B. Sahu and G. A. Rincón-Mora, “An accurate, low voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 312–321, Feb. 2007.
[25] F. I. Simjee and P. H. Chou, “Efficient Charging of Supercapacitors for Extended Lifetime of Wireless Sensor Nodes,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1526–1536, May 2008.
[26] S. Y. Wang, “A Boost Converter with Maximum Power Point Tracking for Solar Photovoltaic Energy Harvesting,” M.S. thesis, Dept. of Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, R.O.C., July. 2013.
[27] H. Deng, X. Duan, N. Sun, Y. Ma, A. Q. Huang, and D. Chen, “Monolithically Integrated Boost Converter Based on 0.5-μm CMOS Process,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 628–638, May 2005.
[28] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York: Oxford, 2010.
[29] D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, Inc., 1997.
[30] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill Education, 2002.