簡易檢索 / 詳目顯示

研究生: 柯仲禹
Ke, Chung-Yu
論文名稱: 堆疊三氧化二鋁/二氧化鈦閘極介電層研製增強型氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體
Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors Using Stacked Al2O3/TiO2 Gate Dielectrics
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 101
中文關鍵詞: 氮化鋁鎵/氮化鎵高電子遷移率電晶體閘極掘入液相沉積閘極介電層堆疊
外文關鍵詞: AlGaN/GaN, HEMT, gate recess, liquid-phase deposition, gate dielectric stack
相關次數: 點閱:149下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中我們成功利用液相沉積和濺鍍技術,堆疊高品質超薄三氧化二鋁和二氧化鈦研製閘極介電層堆疊金氧半氮化鋁鎵/氮化鎵高電子遷移率電晶體,藉由三氧化二鋁高能隙和高崩潰電場的特性,有效抑制閘極漏電流的產生並提高崩潰電壓。此外,堆疊高介電常數二氧化鈦,能進一步的抑制閘極漏電流和提高崩潰電壓,同時維持低等效氧化層厚度。藉由比較傳統型氮化鋁鎵/氮化鎵高電子遷移率電晶體及相同物理厚度之二氧化鈦介電層氮化鋁鎵/氮化鎵高電子遷移率電晶體,成功使閘極介電層堆疊金氧半氮化鋁鎵/氮化鎵高電子遷移率電晶體降低閘極漏電流一到二個數量級並提升崩潰電壓大約60伏特,而其他電性也有所提升。
    此外,為了避免額外功率的損耗及減化電路的偏壓設計,我們利用閘極掘入的方式,減少電晶體閘極下方的二維電子氣濃度,成功使三氧化二鋁/二氧化鈦閘極堆疊金氧半氮化鋁鎵/氮化鎵高電子遷移率電晶體臨界電壓有效提升至0.67 V;最大電流密度可達391 mA/mm,轉導值則為100 mS/mm,電流開關比為4.93×105,閘極漏電流及崩潰電壓則為1.35×10-6A/mm和172 V。

    In this study, AlGaN/GaN metal–oxide–semiconductor high electron mobility transistors (MOSHEMTs) with stacked high-quality ultra-thin Al2O3/TiO2 gate dielectrics have been successfully fabricated by liquid-phase deposition/sputtering techniques. The high bandgap and high breakdown field of Al2O3 dielectric can effectively suppress gate leakage current and increase breakdown voltage. However, stacking high-k TiO2 dielectric further suppresses the gate leakage current, enhancing the breakdown voltage and maintaining a low equivalent oxide thickness. The gate leakage current is successfully reduced by 1–2 orders of magnitude, and the breakdown voltage increased by approximately 60V compared with conventional AlGaN/GaN HEMTs and AlGaN/GaN MOSHEMTs with a single TiO2 dielectric layer of the same physical thickness. Other performances are also enhanced.
    To avoid additional power consumption and simplify bias design of the circuit, gate recess process is used to reduce of the density of the two-dimensional electron gas (2DEG) under the gate region. Therefore, the threshold voltage of gate dielectric stack Al2O3/TiO2 AlGaN/GaN MOSHEMTs is effectively improved to 0.67 V. The maximum drain current density reaches 391 mA/mm. The maximum transconductance is 100 mS/mm. The on/off ratio is 4.93×105. The gate leakage current and breakdown voltage are 1.35×10−6 A/mm and 172 V, respectively.

    ABSTRACT (Chinese) I ABSTRACT (English) III ACKNOWLEDGEMENT V CONTENTS VII FIGURE CAPTIONS X TABLE CAPTIONS XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 5 1.3 Organization 7 Chapter 2 Mechanism of AlGaN/GaN HEMT 8 2.1 Lattice Structure 8 2.2 Polarization Mechanism of AlGaN/GaN 10 2.2.1 Spontaneous Polarization 11 2.2.2 Piezoelectric Polarization 13 2.2.3 Two-Dimensional Electron Gas (2DEG) 15 2.2.4 Al-content-dependent Sheet Carrier Concentration 16 2.3 Modeling of AlGaN/GaN HEMT 18 2.3.1 Drain Current Model 18 2.3.2 Simulation Derivation 19 2.3.3 Simulation results 22 Chapter 3 Experiments and Device Fabrication 28 3.1 Experimental Equipment 28 3.1.1 E-Gun Evaporator and Sputter 28 3.1.2 Rapid Thermal Annealing (RTA) System 28 3.1.3 Spin Coater 29 3.1.4 Oven 29 3.1.5 Mask Aligner 29 3.1.6 ICP Etching System 30 3.1.7 Co-sputtering System 30 3.2 Etching Process 35 3.2.1 Dry and Wet Etching 35 3.2.2 Etching depth 36 3.3 Gate Dielectrics with Liquid-phase Deposition (LPD) and Sputtering 38 3.3.1 Property of Al2O3 and TiO2 38 3.3.2 LPD Procedures of Al2O3 39 3.3.3 Sputtering Procedures of TiO2 42 3.4 Fabrication Process 43 3.4.1 Mesa Isolation 44 3.4.2 Source and Drain Ohmic Contact 44 3.4.3 Gate Area Definition and Gate-Recess Etching 46 3.4.4 Liquid-phase Deposited Al2O3 and Sputtered TiO2 47 3.4.5 Gate Formation 47 3.5 Schematic Procedures 48 Chapter 4 Results and Discussion 53 4.1 Properties of Liquid-phase Deposited Al2O3 and Sputtered TiO2 53 4.1.1 X-ray photoelectron spectroscopy (XPS) 53 4.1.2 Atomic Force Microscope (AFM) 56 4.1.3 Transmission electron microscopy (TEM) 58 4.2 Device Performance of AlGaN/GaN MOSHEMT 60 4.2.1 Saturation Drain Current 60 4.2.2 Transfer Characteristics and Transconductance 63 4.2.3 Gate Leakage Current 65 4.2.4 Subthreshold Swing and ION/IOFF Ratio 67 4.2.5 Off-State Breakdown Voltage 69 4.3 Device Performance of E-mode AlGaN/GaN MOSHEMT 71 4.3.1 Saturation Drain Current 71 4.3.2 Transfer Characteristics and Transconductance 74 4.3.3 Gate Leakage Current 77 4.3.4 Subthreshold Swing and ION/IOFF Ratio 79 4.3.5 Off-State Breakdown Voltage 81 4.3.6 Capacitance–Voltage Measurement 83 4.3.7 Pulse I–V Characteristics 84 4.3.8 Cutoff Frequency and Maximum Oscillation Frequency 86 4.3.9 Flicker Noise 87 4.3.10 Output Power Characteristics 88 Chapter 5 Conclusion 89 Chapter 6 Future Work 93 References 94

    [1] U. K. Mishra, L. Shen, T. E. Kazior, and Y.-F. Wu, “GaN-based RF power devices and amplifiers,” Proc. IEEE, vol. 96, no. 2, pp. 287–305, 2008
    [2] L. F. Eastman, and U.K. Mishra, “The Toughest Transistor Yet [GaN transistors],” IEEE SPECTRUM, vol. 39, pp. 28-33, May 2002
    [3] A. P. Zhang, F. Ren, T. J. Anderson, C. R. Abernathy, R. K. Singh, P. H. Holloway, S. J. Pearton, and D. Palmer, “High-power GaN electronic devices,” Critical reviews in solid state and materials sciences, vol. 27 pp.1-71, 2002
    [4] M. A. Khan, Q. Chen, C. J. Sun, J. W. Yang, M. Blasingame, M. S. Shur, and H. Park, “Enhancement and depletion mode GaN/AlGaN heterostructure field effect transistors,” Appl. Phys. Lett., vol. 68, no. 4, pp. 514–516, Jan. 1996.
    [5] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura, and H. Ohashi, “High breakdown voltage AlGaN–GaN power HEMT design and high current density switching behavior,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2528–2531, Dec. 2003.
    [6] W. B. Lanford, T. Tanaka, Y. Otoki, and I. Adesid, “Recessed-gate enhancement-mode GaN HEMT with high threshold voltage,” Electron. Lett., vol. 41, no. 7, pp. 449–450, Mar. 2005.
    [7] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed gate structure approach toward normally off high-voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356–362, Feb. 2006.
    [8] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J.-B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin, and U.I. Chung, “p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 202–204, Feb. 2013.
    [9] S. Yang, S. Huang, M. Schnee, Q. T. Zhao, J. Schubert, and K. J. Chen “Enhancement-mode LaLuO3–AlGaN/GaN metal–insulator–semiconductor high-electron-mobility transistors using fluorine plasma ion implantation,” Jpn. J. Appl. Phys., vol. 52, no. 8S, pp. 08JN02, May 2013.
    [10] H. Huang, Y. C. Liang, G. S. Samudra, and C. L. L. Ngo “Au-free normally-off AlGaN/GaN-on-Si MIS-HEMTs using combined partially recessed and fluorinated trap-charge gate structures,” IEEE Electron Device Lett., vol. 35, no. 5, pp. 569–571, May 2014.
    [11] M. Khan, G. Simin, J. Yang, J. P. Zhang, A. Koudymov, M. S. Shur, R. Gaska, X. Hu, and A. Tarakji, “Insulating gate III-N heterostructure field-effect transistors for high-power microwave and switching applications,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 624–633, Feb. 2003
    [12] N. Pala, R. Gaska, S. Rumyantsev, M. S. Shur, M. A. Khan, X. Hu, G. Simin, and J. Yang, “Low-frequency noise in AlGaN/GaN MOS-HFETs,” Electron. Lett., vol. 36, no. 3, pp. 268–270, Feb. 2000.
    [13] W. S. Tan, M. J. Uren, P. W. Fry, P. A. Houston, R. S. Balmer, and T. Martin, “High temperature performance of AlGaN/GaN HEMTs on Si substrates,” Solid State Electron., vol. 50, no. 3, pp. 511–513, Mar. 2006
    [14] T. E. Hsieh, E. Y. Chang, Y. Z. Song, Y. C. Lin, H. C. Wang, S. C. Liu, S. Salahuddin, and C. C. Hu, “Gate Recessed Quasi-Normally OFF Al2O3/AlGaN/GaN MIS-HEMT With Low Threshold Voltage Hysteresis Using PEALD AlN Interfacial Passivation Layer,” IEEE Electron Device Letters, vol. 35, no. 7, pp. 732-734, July 2014.
    [15] G. Yel, H. Wang, S. Arulkumaran, G. I. Ng, R. Hofstetter, Y. Li, M. J. Anand, K. S. Ang, Y. K. T. Maung, and S. C. Foo “AlGaN/GaN MISHEMTs on silicon using atomic layer deposited ZrO2 as gate dielectrics,” Device Research Conference, 2013 71st Annual, Notre Dame, IN, Jun 2013, pp. 71-72
    [16] C. Liu, E. F. Chor, and L. S. Tan, “Material and device characterizations of AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors with reactive-sputtered HfO2 gate dielectric,” 2006 64th Device Research Conference, State College, PA, USA, 2006, pp. 113-114.
    [17] B. Y. Chou, C. S. Lee, C. L. Yang, W. C. Hsu, H. Y. Liu, M. H. Chiang, W. C. Sun, S. Y. Wei, and S. M. Yu, “TiO2-Dielectric AlGaN/GaN/Si Metal-Oxide-Semiconductor High Electron Mobility Transistors by Using Nonvacuum Ultrasonic Spray Pyrolysis Deposition,” IEEE Electron Device Letters, vol. 35, no. 11, pp. 1091-1093, Nov. 2014
    [18] P. Alexandrov, J. Koprinarova, and D. Todorov, “Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron,” Vaccum, vol. 47, pp. 1333-1336, 1996
    [19] C. Wilhelm, A. Larrue, X. Dai, D. Migas, and C. Soci, “Anisotropic photonic properties of III–V nanowires in the zinc-blende and wurtzite phase,” Nanoscale, vol. 4, no. 5, pp. 1446-1454, 2012
    [20] B. Paulus, F. J. Shi, and H. Stoll, “A correlated ab initio treatment of the zinc-blende wurtzite polytypism of SiC and III - V nitrides,” J. Phys.: Condens. Matter, vol. 9, pp. 2745-2758, 1997.
    [21] O. Ambacher, “Growth and applications of Group III-nitrides,” Journal of Physics D: Applied Physics, vol. 31, pp. 2653-2710, Jun. 1998.
    [22] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” JOURNAL OF APPLIED PHYSICS, vol.87, no.1, pp. 333-344, Jan. 2000
    [23] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol.56, no. 16, R10024, Oct 1997
    [24] E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, “Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures,” Journal of Vacuum Science & Technology B, vol.17, no. 4, pp.1742-1749, 1999
    [25] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222-3233, Mar. 1999.
    [26] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B, vol.56, no. 16, R10024, Oct 1997
    [27] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys, vol. 85, no. 6, Mar. 1999.
    [28] W. Fikry, G. Ghibaudo, H. Haddara, S. Cristoloveanu, and M. Dutoit, “Method for extracting deep submicrometer MOSFET parameters,” Electronics Letters, vol. 31, no. 9, pp. 762-764, Apr. 1995.
    [29] T. J. Anderson, M. J. Tadjer, M. A. Mastro, J. K. Hite, K. D. Hobart, C. R. Eddy, and F. J. Kub, “Characterization of recessed-gate AlGaN/GaN HEMTs as a function of etch depth,” Journal of electronic materials, vol. 39, no. 5, pp. 478-481, Aug. 2010.
    [30] NCKU. Co-Sputtering System [Online]. Available: http://140.116.176.21/www/technique/20071112/Cosputter.pdf
    [31] H. Xiao, Introduction to semiconductor manufacturing technology. Upper Saddle River, NJ: Prentice Hall, 2001.
    [32] Nayak, P. Avinash, M. S. Islam, and V. J. Logeeswaran. “Wet Etching,” Encyclopedia of Nanotechnology. Springer Netherlands, pp.2829-2830, 2012.
    [33] M. Quirk, and J. Serda, “Semiconductor manufacturing technology,” Mishawaka: Prentice Hall, pp.439-440, 2001.
    [34] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment:From Depletion Mode to Enhancement Mode,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO.9, pp. 2207-2215, SEP 2006
    [35] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Reports on Progress in Physics, vol. 69, no. 2, pp. 327-396, Feb. 2006.
    [36] Z. H. Liu, G. I. Ng, S. Arulkumaran , Y. K. T. Maung , K. L. Teo , S. C. Foo, and S. Vicknesh, “Improved microwave noise and linearity performance in GaN MISHEMTs on silicon with ALD Al2O3 as gate dielectric,” Microwave Integrated Circuits Conference (EuMIC), 2010 European, Paris, 2010, pp. 41-44.
    [37] R. Shao, C. Wang, D. E. McCready, T. C. Droubay, and S. A. Chambers, “Growth and structure of MBE grown TiO2 anatase films with rutile nano-crystallites,” Surface Science, vol. 601, no. 6, pp. 1582-1589, Mar. 2007.
    [38] L. Pang, and K. Kim, “Simultaneous enhancement of current and breakdown voltage in AlGaN/GaN MOSHEMTs using sputtered / PECVD gate-dielectrics,” Power and Energy Conference at Illinois (PECI), 2012 IEEE, Champaign, IL, 2012, pp. 1-4.
    [39] H. Nagayama, H. Honda and H. Kawahara, “A new process for silica coating,” Journal of The Electrochemical Society, vol. 135, no. 8, pp. 2013-2016, 1988.
    [40] S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, “Titanium (IV) oxide thin films prepared from aqueous solution,” Chem. Lett., vol. 25, no. 6, pp. 433–434, 1996.
    [41] S. Basu, P. K. Singh, J. J. Huang, Y. H. Wang. “Liquid-phase deposition of Al2O3 thin films on GaN,” Journal of The Electrochemical Society, vol. 154, no. 12, pp. H1041-H1046, 2007
    [42] S. Basu, P. K. Singh, P. W. Sze, Y. H. Wang “AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” Journal of The Electrochemical Society, vol.157, no.10, H947-H951, 2010
    [43] Wiki. Sputter deposition [Online]. Available: https://en.wikipedia.org/wiki/Sputter_deposition
    [44] T. E. Hsieh, Y. C. Lin, J. T. Liao, W. C. Lan, P. C. Chin, and E. Y. Chang, “Effect of high voltage stress on the DC performance of the Al2O3/AlN GaN metal–insulator–semiconductor high-electron mobility transistor for power applications,” Applied Physics Express, vol.8, no.10, 104102.
    [45] T. Y. Wu, P. W. Sze, C. C. Hu, T. J. Huang, and Y. H. Wang, “AlGaN/GaN metal oxide semiconductor high electron mobility transistor using liquid-phase deposited strontium titanate,” Solid State Electronics, vol. 82, pp. 1-5, Feb. 2013.
    [46] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370-1372, Nov. 2013.
    [47] J. H. Bae, I. Hwang, J. M. Shin , H. I. Kwon , C. H. Park, J. Ha , J. Lee, H. Choi, J. Kim , J. B. Park , J. Oh , J. Shin , U.I. Chung, and J. H. Lee “Characterization of traps and trap-related effects in recessed-gate normally-off AlGaN/GaN-based MOSHEMT,” in Proc. Int. Electron Devices Meeting, pp. 13.2.1–13.2.4, Dec. 2012
    [48] S. Huang, X. Liu, J. Zhang, K. Wei, G. Liu, X. Wang, and C. Liu, “High RF Performance Enhancement-Mode Al2O3/AlGaN/GaN MIS-HEMTs Fabricated With High-Temperature Gate-Recess Technique,” IEEE Electron Device Letters, vol.36, no.8, pp.754-756, Aug 2015
    [49] K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm and J. H. Lee, “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 192-194, Mar. 2010.
    [50] C. Y. Tsai, T. L. Wu, and A. Chin, “High-Performance GaN MOSFET With High-κ LaAlO3/SiO2 Gate Dielectric,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 35-37, Jan. 2012.
    [51] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370-1372, Nov. 2013.
    [52] C. C. Lin, L. W. Lai, C. Y. Lin and, T. Y. Tseng, “SrTiO3–SiO2 oxide films for possible high-k gate dielectric applications,” Thin Solid Films, vol. 515, no. 20, pp. 8005-8008, 2007

    無法下載圖示 校內:2021-08-08公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE