| 研究生: |
洪靖博 Hung, Jing-Bo |
|---|---|
| 論文名稱: |
穩態均勻流中線性波通過拋物線型結構物之數值研究 Numerical Study of Linear Waves Propagating over a Submerged Parabolic Obstacle in the Presence of a Steady Uniform Current |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 波流互制作用 、波流結構物互制作用 、潛沒式拋物線型結構物 、渦流演化 |
| 外文關鍵詞: | wave-current interaction, wave-current-structure interaction, submerged parabolic obstacle, vortex evolution |
| 相關次數: | 點閱:136 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究主題為利用二維波浪模式(COBRAS)模擬穩態均勻流中線性波通過拋物線型結構物之現象。本研究所利用之數值模式為求解雷諾平均方程式(RANS),並採用流體體積法(VOF)追蹤自由液面之變化。波與流同時在入射邊界產生與傳遞,為避免波流共存時產生的水面震盪和邊界反射問題,採用緩衝函數(ramp function)和輻射邊界條件(RBC)。
為了驗證模式之模擬能力,本文與Tsao (1959)所推導之理論解做驗證,包括波形和速度剖面。從比較結果推估本模式具備不錯的模擬能力。
本文主要探討線性波通過拋物線型結構物時,有無一穩態均勻流存在時的現象比較,討論主題包括空間波形、渦度場、速度場、質點運動軌跡和底床動壓。
This study shows the numerical results of a linear wave train propagating over a submerged parabolic obstacle with and without current using the two-dimensional volume of fluid (VOF)-type numerical model called COBRAS (Cornell BReaking And Structure). The present numerical model solves the Reynolds Averaged Navier-Stokes (RANS) equations for describing mean flow motion of essentially any Newtonian fluid. The volume of fluid (VOF) method is used to trace the free surface motion. In our study, the wave and current are generated through the inflow boundary by specifying both free surface elevation and velocity components. To avoid the unwanted fluctuation and reflection with the coexistence of wave and current, a ramp function is used and the outflow phase velocity of the radiation boundary condition is also modified.
The capability of present numerical model is validated with the analytical solution of Tsao (1959). Comparisons are made between present numerical result and the analytical solution and they show fairly good agreements.
Furthermore, a linear wave train propagating over a submerged parabolic obstacle with and without current is investigated. Particularly, the spatial surface profile, vorticity field, velocity field, particle kinematics and bottom dynamic pressure are discussed in detail.
1.Baddour, R.E., Song, S.W., (1990a). On the interaction between waves and currents. Ocean Eng., 17 (1/2), 1-21.
2.Baddour, R.E., Song, S.W., (1990b). Interaction of higher-order water waves with uniform currents. Ocean Eng., 17(6), 551-568.
3.Braza, M., Chassaing, P., Minh, H.H., (1986). Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech., 165, 79-130.
4.Brevik, I., (1980). Flume experiment on waves and currents. II. Coast. Eng., 4, 89-110.
5.Brink-Kjaer, O., (1976). Gravity waves on a current: the influence of vorticity, a sloping bed and dissipation. Series paper 12. Inst. Of Hydrodyn. & Hydraulic Engng, Tech. University of Denmark.
6.Canals, M., Pawlak, G., (2011). Three-dimensional vortex dynamics in oscillatory flow separation. J. Fluid Mech., 677, 1-26.
7.Celebi, M.S., (2001). Nonlinear transient wave-body interactions in steady uniform currents. Comput. Meth. Appl. Mech. Eng., 190, 5149-5172.
8.Celebi, M.S., Kim, M.H., Beck, R.F., (1998), Fully nonlinear 3-D numerical wave tank simulation. J. Ship Res., 42(1), 33-45.
9.Chaplin, J. R., (1990). The computation of nonlinear waves on a current of arbitrary non-uniform profile. OTH,90327, HMSO.
10.Chawla, A., Kirby, J. T., (2002). Monochromatic and random wave breaking at blocking points. J. Geophys. Res., 107 (C7), 4-1-19.
11.Chorin, A.J., (1968). Numerical solution of Navier-Stokes equations. Math. Comp.,22, 745-762.
12.Chorin, A.J., (1969). On the convergence of discrete approximations of the Navier-Stokes equations. Math. Comp.,23, 7341-353.
13.Fenton, J. D. (1985). A fifth-order Stokes theory for steady waves. J. Waterw. Port Coast. Ocean Eng., ASCE 111, 216-234.
14.Graham, J. M. R., (1980). The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenter numbers. J. Fluid Mech., 97, 331-346.
15.Grant WD, Madsen OS., (1979). Combined wave and current with a rough bottom. J. Geophys. Res.,84(C4):1797-808.
16.Grue, J., 1992. Nonlinear water waves at a submerged obstacle or bottom topography. J. Fluid Mech., 244, 455–476.
17.Hedges, T.S., Lee, B.W., (1992). The equivalent uniform current in wave-current computations. Coast. Eng., 16(3), 301-311.
18.Hirt, C.W., Nichols, B.D., (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39(1), 201-225.
19.Horikawa, K., 1978. Coastal Engineering: An Introduction to Ocean Engineering. University of Tokyo Press, p.14.
20.Hsu, T.-J., Sakakiyama, T., Liu, P.L.-F., (2002). A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coast. Eng., 46, 25-50.
21.Ismail, N.M., (1983). Effects of wave-current interaction on the design of marine structure. Offshore Technology Conference, pp. 307-313.
22.Jonsson, I.G., (1990). Wave-current interaction. In: From the Sea: Ocean Engineering Science, vol. 9. Wiley, New York, p. 71.
23.Kemp, P.H., Simons, R.R., (1982). The interaction between waves and a turbulent current: waves propagating with the current. J. Fluid Mech., 116, 227-250.
24.Kemp, P.H., Simons, R.R., (1983). The interaction of waves and a turbulent current: waves propagating against the current. J. Fluid Mech., 130, 73-89.
25.Kirby, J. T., Chen, T. M., (1989). Surface waves on vertically sheared flows: Approximate dispersion relations. J. Geophys. Res., 94, 1013-1027.
26.Kishida, N., Sobey, R.J., (1988). Stokes theory for waves on a linear shear current. J. Eng. Mech., 114, 1317-1334.
27.Kothe, D.B., Mjolsness, R.C., Torrey, M.D., (1991). RIPPLE: a new model for incompressible flows with free surface. Rep. LA-12007-MS, Los Alamos National Laboratory.
28.Launder, B.E., Reece, G.T., Rodi, W., (1975). Progress in development of a Reynalods stress turbulence closure. J. Fluid Mech., 68, 537-566.
29.Lin, P., (1998). Numerical modeling of breaking waves. Ph.D dissertation, Cornell University, Ithaca, USA.
30.Lin, P., Liu., P.L.-F., (1998a). A numerical study of breaking waves in the surf zone. J. Fluid Mech., 359, 239-264.
31.Lin, P., Liu., P.L.-F., (1998b). Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J.Geophys. Res., 103(C8), 15677-15694.
32.Lin, W. J., Lin, C., Hsieh, S. C., and Dey, S., (2009). Flow characteristics around a circular cylinder placed horizontally above a plane boundary. J. Eng. Mech., 135, 697-716.
33.Liu., P.L.-F., Lin, P., Chang, K.-A., (1999). Numerical modeling of wave interaction with porous structure. J. Waterw. Port Coast. Ocean Eng., ASCE,125(6), 322-330.
34.Longuet-Higgins, M.S., Stewart, R.W., (1962). Radiation stress and mass transport in gravity waves with application to surf beats. J. Fluid Mech., 13, 481-504.
35.Marin, F., (1999). Velocity and turbulence distributions in combined wave-current flows over a rippled bed. Journal of Hydraulic Research, 37(4): 501-16.
36.Peregrine, D. H., (1976). Interaction of water waves and currents. Adv. Appl. Mech., 16, 9-117.
37.Phillips, O.M., (1977). The Dynamics of the Upper Ocean, second ed. Cambridge University Press, Cambridge.
38.Price, S. J., Summer, D., Smith, J. G., Leong, K., and Paidoussis, M. P., (2002). Flow visualization around a circular cylinder near to a plane wall. J. Fluids Struct., 16(2), 175-191.
39.Rey, V., Belzons, M., Guazzelli, E., (1992). Propagation of surface gravity waves over a rectangular submerged bar. J. Fluid Mech., 235, 453-479.
40.Seabra-Santos, F.J., Renouard, D.P., Temperville, A.M., (1987). Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle. J. Fluid Mech., 176, 117-134.
41.Shih, T.-H., Zhu, J., Lumley, J.L.J (1996). Calculation of wall-bounded complex flows and free shear flows. Int. J. Numer. Mech. Fluids, 23 (11), 1133-1144 Dec.
42.Simmen, J. A., Saffman, P. G., (1985). Steady deep water waves on a linear shear current. Stud. Appl. Maths, 73, 35-57.
43.Skop RA., (1987). Approximate dispersion relation for wave-current interactions. J. Waterw. Port Coast. Ocean Eng., ASCE,113, 187-195.
44.Soulsby, R.L., Hamm, L., Klopman, G., Myrhaug, D., Simons, R.R., Thomas, G.P., (1993). Wave-current interaction within and outside the bottom boundary layer. Coast. Eng., 21, 41-69.
45.Stewart, R. H., Joy, J. W., (1974). HF radio measurements of surface currents. Deep-Sea Res., 21, 1039-1049.
46.Swan, C., (1990). An experimental study of waves on a strongly sheared current profile. In Proc. 22nd Intl Conf. on Coastal Engng, Delft (ed. B. L. Edge). ASCE, Vol. 1, pp. 489-502.
47.Swan, C., Cummins, I.P., James, R.L., (2001). An experimental study of 2-D surface water waves propagating on depth-varying currents. Part 1: Regular waves. J. Fluid Mech., in press.
48.Swan, C., James, R.L., (2000). A simple analytical model for surface water waves on a depth-varying current. Submitted to Appl. Ocean Res.
49.Teles Da Silva, A. F., Peregrine, D. H., (1988). Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech., 195, 281-302.
50.Thomas, G.P., (1981). Wave-current interactions: an experimental and numerical study. Part 1. Linear waves. J. Fluid Mech., 110, 457-474.
51.Thomas, G.P., (1990). Wave-current interactions: an experimental and numerical study. Part 2. Nonlinear waves. J. Fluid Mech., 216, 505-536.
52.Thomas, G.P., Klopman, G., (1997). Wave-current interactions in the near-shore region. In: Hunt JN, editor. Gravity waves in water of finite depth, Advances in fluid mechanics. Computational Mechanics Publications, 66-84.
53.Ting, F.C.K., Kim, Y.-K., (1994). Vortex generation in water waves propagation over a submerged obstacle. Coast. Eng., 24, 23-49.
54.Tolman, H.L., (1990). The influence of unsteady depths and currents of tides on wind-wave propagation in shelf seas. Journal of Physical Oceanography, 20, 1166-1174.
55.Tolman, H.L., (1991a). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21, 782-797.
56.Tolman, H.L., (1991b). Effects of tides and storm surges on North Sea wind waves. Journal of Physical Oceanography, 21, 766-781.
57.Tsao, S., (1959). Behaviour of surface waves on a linearly varying flow. Tr. Mosk. Fiz.-Tekh. Inst. Issled. Mekh. Prikl. Mat. 3, 66-84.
58.Wu, C.H., Young, C.C., Chen, Q., Lynett, P.J., (2010). Efficient nonhydrostatic modeling of surface waves from deep to shallow water. J. Waterw. Port Coast. Ocean Eng., 136, 104-118.
59.Zaman, M.H., Baddour, R.E., (2004). Loading on a fixed vertical slender cylinder in an oblique wave-current field. 23rd International Conference on Offshore Mechanics and Arctic Engineering, OMAE- 2004, ASME, Vancouver, Canada, 9 pp., on CD-ROM.
60.Zaman, M.H., Baddour, R.E., (2005). Combined loading of a wave and surface current on a fixed vertical slender cylinder. 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE-2005, ASME, Halkidiki, Greece, 8pp., on CD-ROM.
61.Zaman, M.H., Hiraishi, T., (1999). Nonlinear model for wave fields with current. Report of the Port and Harbor Research Institute, Japan 38 (3), 1-27.
62.Zaman, M.H., Togashi, H., (1996). Experimental study on interaction among waves, currents and bottom topography. Proceedings of the Civil Engineering in the Ocean, JSCE, 49-54.
63.Zaman, M.H., Togashi, H., (1997). Modeling horizontally two dimensional wave-current coexistence field over uneven topography. Proceedings of the 7th International Offshore and Polar Engineering Conference, ISOPE-97, vol. III, HI, USA, pp. 838-845.
64.Zaman, M.H., Togashi, H., Yu, X., (1994). Modeling wave-current interaction over an uneven sea bottom. Proceedings of the Civil Engineering in the Ocean, JSCE, 25-30.
65.Zaman, M.H., Togashi, H.Baddour, R.E., (2008). Deformation of monochromatic water wave trains propagating over a submerged obstacle in the presence of uniform currents. Ocean Eng., 35, 823-833.