| 研究生: |
周孟諄 Jhou, Meng-Jhun |
|---|---|
| 論文名稱: |
建立一個可全面評估新微陣列缺值填補演算法效能的網頁工具 Construction of a web tool for comprehensively evaluating the performance of a new microarray missing value imputation algorithm |
| 指導教授: |
吳謂勝
Wu, Wei-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 網頁平台 、缺值填補 、微陣列資料 、效能評比 、演算法 |
| 外文關鍵詞: | Web tool, Missing value imputation, Performance comparison, Algorithm |
| 相關次數: | 點閱:106 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
填補缺值的方法對於微陣列資料分析是非常重要的,因為含有缺值的微陣列資料會明顯降低後續分析的表現與效能。雖然現今已有很多微陣列資料的缺值填補演算法,但仍然缺乏一個既客觀又全面地效能架構。因此,在我們之前發表的研究裡(發表於2013 年的BMC Systems Biology),我們提出了一個可以全面且客觀的比較各種既有演算法效能的架構,我們的架構可以應用在開發新的缺值填補演算法,然而,建構此架構對於演算法研究人員並不是一件容易的事。為了節省研究人員的時間與精力,我們在這裡發表一個易於使用的效能評比網路工具MVIAeval(Missing Value Imputation Algorithm evaluator)。
MVIAeval 提供一個方便使用者使用的介面,讓使用者可以上傳自己的新演算法程式碼,接著按照五個步驟設定:
(1) 20 個微陣列資料中選擇欲模擬測試的資料
(2) 12 個既有的演算法中選擇欲比較的演算法
(3) 3 個效能指標中選擇欲評比的指標
(4) 2 種全面性的表現評分方式中選擇欲評分的方式
(5) 設定模擬次數
最後將模擬出來的效能比較結果呈現成表格與圖。
MVIAeval 是一個對於開發缺值填補新演算法的研究人員,可以簡單使用又能達到全面又客觀的效能評比器。此評比器不只能使用在微陣列資料,只要是矩陣型式的生物資料(如次世代定序(NGS)資料、蛋白質資料)都是可實行的。因此MVIAeval 是對於高通量(high-throughput)和全基因體(genome-wide)缺值填補演算法,此研究領域的一個重要促進工具。
Method of imputing the missing value for microarray dataset analyses is very important because the microarray data containing missing values will significantly reduce the performance and effectiveness of downstream analyses. Although today, there are a lot of missing value imputation algorithms, it is still a lack of objective and comprehensive performance architecture. In our previous study published, we instruct a comprehensive and objective comparison framework of various existing algorithms. Our framework can be used in the development of new missing value imputing algorithm. However, the construction of this framework of algorithms for the researchers is not an easy task. To save time and effort for researchers, we publish an easy to use web tool named MVIAeval (Missing Value Imputation Algorithm evaluator).
MVIAeval provides a convenient user interface to use, allowing users to upload their new algorithm code, then follow these five steps to select:
(1) the simulation test data among 20 microarray dataset.
(2) the comparison algorithms in 12 existing algorithms.
(3) the performance indices from three ones.
(4) the comparison method of all algorithms in two performance scores.
(5) the number of simulation times.
Finally, it will shown results of simulated performance comparison in figure and tables.
MVIAeval is a well useful tool for researchers, we can simply use to achieve a comprehensive and objective performance comparison of their new algorithm they developed for imputing missing value in microarray data.
[1] T. H. Bø, B. Dysvik, and I. Jonassen, “LSimpute: accurate estimation of missing values in microarray data with least squares methods,” Nucleic Acids Research, vol. 32, no. 3, p. e34, 2004.
[2] L. P. Brás, and J. C. Menezes, “Improving cluster-based missing value estimation of DNA microarray data,” Biomolecular Engineering, vol. 24, no. 2, pp. 273-282, 2007.
[3] G. N. Brock, J. R. Shaffer, R. E. Blakesley, M. J. Lotz, and G. C. Tseng, “Which miss-ing value imputation method to use in expression profiles: a comparative study and two selection schemes,” BMC Bioinformatics, vol. 9, p. 12, 2008.
[4] Z. Cai, M. Heydari, and G. Lin, “Iterated local least squares microarray missing value imputation,” Journal of Bioinformatics and Computational Biology, vol. 4, no. 5, pp. 935-957, 2006.
[5] M. Celton, A. Malpertuy, G. Lelandais, and A. G. de Brevern, “Comparative ana-lysis of missing value imputation methods to improve clustering and interpretation of micro-array experiments,” BMC Genomics, vol. 11, p. 15, 2010.
[6] C. C. Chiu, S. Y. Chan, C. C. Wang, and W. S. Wu, “Missing value imputation for microarray data: a comprehensive comparison study and a web tool,” BMC Systems Biology, vol. 7, no. Suppl 6, p. S12, 2013.
[7] A. G. de Brevern, S. Hazout, and A. Malpertuy, “Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering,” BMC Bioin-formatics, vol. 5, p. 114, 2004.
[8] D. J. Duggan, M. Bittner, Y. Chen, P. Meltzer, J. M. Trent, “Expression profiling using cDNA microarrays,” Nature Genetics, vol. 21, pp. 10-14, 1999.
[9] X. Gan, A. W. Liew, and H. Yan, “Microarray missing data imputation based on a set theoretic framework and biological knowledge,” Nucleic Acids Research, vol. 34, no. 5, pp. 1608-1619, 2006.
[10] R. Jörnsten, H. Y. Wang, W. J. Welsh, M. Ouyang, “DNA microarray data imputation and significance analysis of differential expression,” Bioinformatics, vol. 21, no. 22, pp. 4155-4161, 2005.
[11] K. Y. Kim, B. J. Kim, and G.S. Yi, “Reuse of imputed data in microarray analysis in-creases imputation efficiency,” BMC Bioinformatics, vol. 5, p. 160, 2004.
[12] H. Kim, G. H. Golub, and H. Park, “Missing Value Estimation for DNA microarray gene expression data: local least squares imputation,” Bioinformatics, vol. 21, no. 2, pp. 187-198, 2005.
[13] E. K. Lee, D. Yoon, and T. Park, “arrayImpute – software for exploratory analysis and imputation of missing values for microarray data,” Genomics Informatics, vol. 5, no. 3, pp. 129-132, 2007.
[14] H. Li, C. Zhao, F. Shao, G. Z. Li, and X. Wang, “A hybrid imputation approach for microarray missing value estimation,” BMC Genomics, vol. 16, no. Suppl 9, p. S1, 2015.
[15] K. Moorthy, S. M. Mohamad, and S. Deris, “A Review on Missing Value Imputation Algorithms for Microarray Gene Expression Data,” Bioinformatics, vol. 9, pp. 18-22, 2014.
[16] S. Oba, M. A. Sato, I. Takemasa, M. Monden, K. Matsubara, and S. Ishii, “A Bayesian missing value estimation method for gene expression profile data,” Bioinformatics, vol. 19, no. 16, pp. 2088-2096, 2003.
[17] S. Oh, D. D. Kang, G. N. Brock, and G. C. Tseng, “Biological impact of missing val-ue imputation on downstream analyses of gene expression profiles,” Bioinformat-ics, vol. 27, pp. 78-86, 2011.
[18] K. Phimmarin, K. Werasak, and B. Tossapon, “A cluster-directed framework for neigh-bour based imputation of missing value in microarray data,” International Journal of Data Mining and Bioinformatics, vol. 15, no. 2, pp. 165-193, 2016.
[19] W. Stacklies, H. Redestig, M. Scholz, D. Walther, and J. Selbig, “pcaMethods – a Bio-conductor package providing PCA methods for incomplete data,” Bioinformatics, vol. 23, no. 9, pp. 1164–1167, 2007.
[20] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R. B. Altman, “Missing value estimation methods for DNA microarrays,” Bioinformatics, vol. 17, no. 6, pp. 520-525, 2001.
[21] J. Tuikkala, L. Elo, O. S. Nevalainen, and T. Aittokallio, “Improving missing val-ue estimation in microarray data with gene ontology,” Bioinformatics, vol. 22, no. 5, pp. 566-572, 2006.
[22] J. Tuikkala, L. L. Elo, O. S. Nevalainen, and T. Aittokallio, “Missing value imputation improves clustering and interpretation of gene expression microarray data,” BMC Bioin-formatics, vol. 9, p. 202, 2008.
[23] D. Urda, J. L. Subirats, P. J. García-Laencina, L. Franco, J. L. Sancho-Gómez, and J. M. Jerez, “WIMP: web server tool for missing data imputation,” Computer Methods and Programs in Biomedicine, vol. 108, no. 3, pp. 1247-1254, 2010.
[24] H. Wang, C. C. Chiu, Y. U. Wu, and W. S. Wu, “Shrinkage regression-based methods for microarray missing value imputation,” BMC Systems Biology, vol. 7, no. Suppl 6, p. S11, 2013.
[25] Q. Xiang, X. Dai, Y. Deng, C. He, J. Wang, J. Feng, and Z. Dai, “Missing value impu-tation for microarray gene expression data using histone acetylation information,” BMC Bioinformatics, vol. 9, p. 252, 2008.
[26] X. Zhang, X. Song, H. Wang, and H. Zhang, “Sequential local least squares imputation estimating missing value of microarray data,” Computers in Biology and Medicine, vol. 38, no. 10, pp. 1112-1120, 2008.
校內:2018-06-30公開