| 研究生: |
陳宏嘉 Chen, Hung-Chia |
|---|---|
| 論文名稱: |
燃燒合成法氮化鋁材料之傳統燒結與微波燒結研究 Study of conventional sintering and microwave sintering with AlN material made by SHS method |
| 指導教授: |
鍾賢龍
Chung, Shyan-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 微波燒結 、氮化鋁 |
| 外文關鍵詞: | Microwave sintering, AlN |
| 相關次數: | 點閱:78 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究採用燃燒合成法所得之氮化鋁粉體以微波及傳統高溫爐方式進行燒結,主要分為兩大部分:第一部分各以微波加熱及傳統加熱方式對添加碳酸鈣助劑之氮化鋁(SHS法合成)粉體進行燒結,並對此兩種不同燒結方式所得之燒結體作進一步分析、探討、比較;第二部分以微波加熱方式對添加氧化釔助劑之氮化鋁粉體進行燒結,並探討氧化釔添加量、燒結溫度、燒結時間及氮化鋁純度等對微波燒結體之影響。
以上兩部分研究除了對燒結體之密度、線性收縮率作初步分析外,另以X-ray繞射儀(XRD)、掃瞄式電子顯微鏡(SEM)、Holometrix Laser Flash Instrument熱傳導儀、穿透式電子顯微鏡(TEM)等儀器,對燒結體之顯微結構、晶相、熱傳導性等性質作進一步之分析、探討。實驗證實,微波燒結較傳統燒結有較快的燒結速率、較高的線性收縮率、較小的晶粒及較均勻顯微結構;而添加氧化釔5wt%於1800℃微波燒結30分鐘之燒結體線收縮率可達17.9%。此外原料粉體中之雜質含量多寡,為影響熱傳導值高低之主要因素。
Abstract
In this study, SHS-produced AlN powder was sintered by microwave heating method and conventional heating method. This study includes tow parts : The first part presents the comparison of AlN samples with CaCO3 as additives between sintered by microwave heating method and conventional heating method. The second part study the effect of additives, sintering times, temperature and purity of powder on AlN samples sintered by microwave heating method.
The density and linear shrinkage of the sintered bodies in two parts stated above were analyzed, then microstructure and second phase were characterized by XRD, SEM, TEM and HRAEM respectively. The thermal conductivity was measured by laser flash method.
The results of the experiments showed that the sintering rate and linear shrinkage of the sintered samples in microwave sintering are higher than ones in conventional sintering. And bodies by microwave sintering also possess relatively finer grain size and more uniform microstructure than ones in conventional sintering. Besides, AlN sample with 5wt% Y2O3 as additives and sintered at 1800℃for 30 minutes could reach a value of 17.9% of linear shrinkage, and the main factor influenced the thermal conductivity value was purity of raw powder.
參考文獻
1. W. H. Sutton, “Microwave processing of Ceramic Materials”, Bull. Am. Ceram. Soc., 68[2], 376, (1989).
2. H. K. Sander, “High-tech Ceramics”, C&E News, July 9, (1984).
3. L. M. Sheppard, Ceramic Bulletin, 69 [11], 1801-1812, (1990).
4. N. Kuramoto, H. Taniguchi, and I. Aso, Am. Ceram. Soc. Bull., 68 [4], 883-887, (1989).
5. T. J. Mroz, Jr., Ceramic Bulletin, 71[ 5], 782, (1992).
6. H. K. Bowen, “Basic Research Needs on High Temperature Ceramics for Energy Application”, Material Science and Engineering 44, 1, (1980).
7. T. Watari, “Shape of AIN powders prepared by Vapor Phase Reaction of AlCl3.NH3-N2”, 日本窯業協會學術論文誌, 97 [8], 864, (1989).
8. J. F. Crider, “Self-propagating High Temperature Synthesis-A Soviet Method for producing Ceramic Materials”, Ceram. Eng. Sci. Proc., 3[9-10]:519, (1982).
9. S. Kumar, Key Engineering Materials, Vol 56-57, 183-188, (1991).
10. A. G. Merzhanov, “Self-Propagating High Temperature Synthesis: Twenty Years of Search and Findings”, In Combustion and Plasma Synthesis of High-Temperature Materials, edited by Z.A. Munir and J.B. Holt, VCH, New York, USA, 1-53, (1990).
11. Z. A. Munir, “Synthesis of High Temperature Materials by Self-Propagating Combustion Methods”, Ceram. Bull., 67[2], 342-349, (1988).
12. G. Selvaduray, and L. Sheet, Mater. Sci. Technol., 9, 463, (1993).
13. F. J-H. Haussonne, Mater. Manufacturing Process 10, 717, (1995).
14. A. G. Merzhanov, and I. P. Borovinskaya, Combust. Sci. Technol. 10, 195, (1975).
15. Z. A. Munri, and J. B, Holt, “The Combustion Synthesis of Refractory Nitrides”, J. Mater. Sci., 22, 710-714, (1987).
16. J. Karpinski, and S. Porowski, ”High Pressure Thermodynamics of GaN”, J. Crystal Growth, 66, 11-20, (1984).
17. (a)李威昌, ”燃燒法合成高性能材料:製程開發與反應機構探 討”, 成功大學博士論文84年畢業。
(b) W. C. Lee, C. L. Tu, and S. L. Chung, J. Mater. Res., 10 [3], 774, (1995).
(c)中華民國專利第71873號、美國第5460794號。
(d)中華民國專利第67194號、美國第5453407號。
18. 林政曉, “燃燒法合成氮化鋁粉體新方法與量產技術開發”, 成功大學碩士論文88年畢業。
19. F. Miyashiro, N. Fwase, A. Tsuge, F. Ueno, M. Nakahashi and T. Takahashi, “High Thermal Conductivity Aluminum Nitride Ceramic Substrates and Packages ”, IEEE Trans. Comp., Hybrids, Manuf., Technol., 13[ 2], 313-319, June (1990).
20. Y. Nagai, and G. C. Lai, “Preparation of AlN Powders by Wet Ball-Milling and Their Characterization”, Journal of the Ceramic Society of Japan, 105, 9-13, (1996).
21. J. Bermudo, and M. I. Osendi, “Study of AlN and Si3N4 powders synthesized by SHS reactions”, Ceramics International 25, 607-612, (1999).
22. The Dow Chemical Company, 美國專利第593310號, January 31, (1996).
23. S. Surnev, D. Lepkova, and A. Yoleva, “Influence of the science additives on the phase composition and the thermal conductivity of aluminium nitride ceramics”, Mater. Sci. and Eng., B10, 35-40, (1991).
24. G. Xu, H. Zhuang, J. Cai, and S. Xu, “Microwave Sintering of SHS-Produced AlN Powders”, Journal of Materials Synthesis and Processing, 4[ 5], 307-315, (1996).
25. 陳信吉, “氮化鋁表面披覆之低溫燒結研究”, 成功大學碩士論文83年畢業。
26.E. T. Thostentson, and T. -W. Chou, “Microwave processing: fundamentals and applications ”, Composites: Part A 30, 1055-1071, (1999).
27.劉岐山, “微波能應用”, 電子工業出版社, (1990).
28.汪建民, “陶瓷技術手冊”, 中華民國科技發展協進會, (1994)。
29.黃昌偉, “陶瓷材料之熱性質分析”, 精密陶瓷特性及檢測分析, 10.1-10.54.
30.W. J. Kim, D. K. Kim, and C. H. Kim, “Coating of Al2O3 Additive on AlN Powder and Its Effect on the Thermal Conductivity of AlN Ceramics”, Journal of Materials Synthesis and Processing, 3[1], 39-48, (1995).
31.R. M. German, Liquid Phase Sintering, Plenum, New York, (1985).
32.J. H. Harris, “Sintered Aluminum Nitride Ceramics for High-Powder Electronic Applications”, JOM, 56-60, (1998).
33.Koji Watari, Hae J. Hwang, Motohiro Toriyama, and Shuzo Kanzaki, “Effective sintering aids for low-temperature sintering of AlN ceramics”, J. Mater. Res., 14[ 4], 1409-1417, (1999).
34.G. C. Lai, and Y. Nagai, “Effect of Oxygen on Sintering of Aluminium Nitride with Y2O3 Sintering Aid”, Journal of the Ceramic Society of Japan, 103, 7-11, (1994).
35.Aase Marie Hundere & Mari Ann Einarsrud, “Microstructural Development in AlN (YF3) Ceramics”, Journal of the European Ceramic Society, 17, 873-878, (1997).
36.A. Geith, M. Kulig, T. Hofmann, and C. Russel, “Thermal conductivity of calcium-doped aluminium nitride ceramics”, Journal of Materials Science, 28, 865-869, (1993).
37.張子岳, “AlN基版材料燒結之研究”, 成功大學碩士論文76年畢業。
38. E. M. Levin, C. R. Robbins, and H. F. McMurolie, “Phase Diagrams for Ceramists”, The Am. Ceram. Society, Fourth Printing 1979.
39. T. T. Meel, et al., J. Mater. Sci. Lett., 7[9], 928-931, (1988).
40.D.E. Clark, et al., In Microwave Processing of MaterialsⅥ, Microwave Processing at the University of Florida, M. F. Iskande, R. J. Lauf, and W. H. Sutton, eds (Mater. Res. Soc., Pittsburgh, 1994), 347, 489-500.
41.B. Swain, Adv. Mater. process., 2[9], 76-82, (1988).
42.M. Schwartz, “High-Temperature Processing and Consolidation”, Handbook of Structural Ceramics, 6.30-6.35, (1991).
43.G. C. Lai, and Y. Nagai,“ Effect of Oxygen on Sintering Aluminium Nitride with Y2O3 Sintering Aid ”, J. Am. Ceram. Soc., 103[1], 6-10, (1995).
44.K. Sakuma, A. Okada, and H.Kawamoto, “Effects of Cation Impurities on Thermal Conductivity of Yttria-Doped Aluminum Nitride ”, J. Mater. Syn. and Pro., 6[5], 315-321, (1998).
45.N. Komeya, H. Taniguchi, and I. Aso, Yogyo-Kyokai-Shi, 93, 1846-1850, (1985).
46. E. M. Levin, C. R. Robbins, and H. F. McMurolie, “ phase Diagrams for Ceramists ”, The Am. Ceram. Soc., Fourth Printing 1979.
47.Y. D. Yu, A. M. Hundere, and R. Hoier, “Microstructural characterization and microstructural effects on the thermalconductivity of AlN(Y2O3) ceramica ”, J. Eur. Ceram. Soc., 22, 247-252, (2002).
48.G. Pezzotti, A. Nakahira, and M. Tajika,“ Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics ”, J. Eur. Ceram. Soc., 20, 1319-1325, (2000).
校內:2095-06-25公開