簡易檢索 / 詳目顯示

研究生: 卓樂甯
Cho, Le-Ning
論文名稱: 含亞胺之苯基咔唑衍生物的合成及其在螢光化學感測器之應用
N-Phenylcarbazole Derivatives with Imine Groups: Synthesis and Fluorescent Chemosensory Characteristics Toward Zinc Ion
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 74
中文關鍵詞: 螢光感測器亞胺光誘導電子轉移鋅離子
外文關鍵詞: fluorescent sensor, imine, photoinduced electron transfer, zinc ion
相關次數: 點閱:70下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋅離子在人體與生物體的代謝及催化反應中扮演著重要的角色,鋅離子過量或不足均會造成嚴重危害。也因此近年來螢光感測器在金屬離子的感測方面的發展越來越受到關注,與其他測定金屬離子的儀器相比,螢光感測器有著容易操作、成本低、量測時間短等優點。
    本研究合成具亞胺結構的苯基咔唑衍生物M1及M2作為金屬離子感測器,因光誘導電子轉移 (photo-induced electron transfer, PET) 作用,M1及M2本身螢光強度低。M1於乙醇/水 (4/1, v/v) 溶劑中;M2於二甲基亞碸/水 (4/1, v/v) 溶劑中,探討對於金屬離子的辨識能力及結合機制,與鋅離子選擇性地增強螢光強度 (λem = 495 nm,M1增強137倍;M2增強20倍),此現象原因為M1及M2與鋅離子作用使光誘導電子轉移被抑制,造成螢光增強。經Job plot實驗得到M1與Zn2+形成錯合物的配位比例是1:1;M2與Zn2+的配位比為1:2。由濃度滴定實驗得到M1與M2對Zn2+的偵測極限分別是2.28×10-8 M及2.63×10-7 M。M1、M2對於Zn2+的螯合辨識在中性及微鹼環境下效果最為明顯。M1與鋅離子作用放光可透過UV燈照射以肉眼觀察到明顯的顏色變化,因分子結構差異M2在螯合Zn2+後螢光增強效果不如M1明顯,且對醇類溶劑溶解度較低,因此在感測器特性上M1優於M2。

    Two novel fluorescent sensors M1 and M2 which contain phenylcarbazole core and terminal imine moieties were synthesized through Suzuki coupling reaction and imine condensation. The structures were characterized by NMR spectroscopy and MALDI/TOF-MS. M1 and M2 exhibit poor fluorescence due to photoinduced electron transfer (PET). Upon the addition of Zn2+, an obvious fluorescence emission enhancement at 495 nm could be observed due to the inhibition of PET. From Job plot, the stoichiometric ratio to Zn2+ were 1:1 and 1:2 for M1 and M2, respectively. The limit of detection (LOD) towards Zn2+ of M1 and M2 were 2.28×10-8 M and 2.63×10-7 M, and the binding constants were 105 M-1 and 6.5×108 M-2, respectively. M1 showed good sensing ability under pH value ranging from 6 to 7.7 and 6.9 to 10 for M2.

    摘要 I 誌謝 XII 目錄 XIII 圖目錄 XVI 表目錄 XX 流程目錄 XX 第一章 緒論 1 1-1前言 1 1-2感測器介紹 2 1-2-1化學感測器 2 1-2-2 金屬離子感測 3 1-2-3 螢光感測器 3 1-3感測器的特性 4 1-3-1 靈敏度 4 1-3-2 選擇性 5 1-3-3 可逆性 5 1-3-4 準確性 5 第二章 文獻回顧 6 2-1 螢光原理介紹 6 2-1-1 分子失活過程 7 2-1-2 影響螢光因素 9 2-2 螢光感測器的訊號傳遞與作用機制 14 2-2-1光誘導電子轉移 (photo-induced electron transfer, PET) 14 2-2-2光誘導電荷轉移 (photo-induced charge transfer, PCT) 16 2-2-3光誘導能量轉移 (photo-induced energy transfer) 18 2-2-4 激發雙體(excimer)或激發複合體(exciplex)的形成 19 2-2-5 聚集誘導放光 (aggregation-induced emission) 20 2-2-6 C=N異構化 (isomerization) 21 2-2-7激發態分子內質子轉移 (excited state intramolecular proton transfer, ESIPT) 23 2-3-8扭曲的分子內電荷轉移 (twisted intramolecular charge transfer, TICT) 24 2-3 希夫鹼 26 2-3-1 以希夫鹼作為辨識基團之感測器介紹 27 2-4 反應機制 29 2-4-1鈴木偶聯反應 (Suzuki coupling) 29 2-5 研究動機 30 第三章 實驗內容 31 3-1 實驗裝置與設備 31 3-2 鑑定測量儀器 32 3-3 感測器M1, M2與金屬離子溶液配製 34 3-4 實驗藥品與材料 35 3-5 反應步驟 37 3-6 單體合成 38 第四章 結果與討論 40 4-1 單體結構鑑定 40 4-1-1 核磁共振光譜 (NMR) 40 4-1-2 基質輔助雷射脫附游離飛行質譜儀 (MALDI/TOF-MS) 41 4-2 光學性質探討 49 4-2-1 探討感測器M1及M2對不同金屬離子的感測能力 49 4-2-2 光譜變化的機制探討 53 4-2-3 濃度滴定實驗 54 4-2-4 Job plot實驗 57 4-2-5 結合常數計算 59 4-2-6 偵測極限 (Detection Limit) 61 4-2-7 雙離子競爭實驗 63 4-2-8 感測器在不同pH值下的影響 65 4-2-9 感測器M1與M2比較 69 4-3 M1-Zn2+錯合物之核磁共振圖譜 70 第五章 結論 71 參考文獻 72

    [1] R. Chitturi, V. R. Baddam, L. Prasad, L. Prashanth, and K. Kattapagari, A review on role of essential trace elements in health and disease. Journal of Dr. NTR University of Health Sciences 4, 75-85 (2015).
    [2] B. L. Vallee and K. H. Falchuk, The biochemical basis of zinc physiology. Physiological Reviews 73, 79-118 (1993).
    [3] J.-c. Qin and Z.-y. Yang, Fluorescent chemosensor for detection of Zn2+ and Cu2+ and its application in molecular logic gate. Journal of Photochemistry and Photobiology A: Chemistry 324, 152-8 (2016).
    [4] W. Luo, M. Liu, T. Yang, X. Yang, Y. Wang, and H. Xiang, Fluorescent Zn(II) Chemosensor Mediated by a 1,8-Naphthyridine Derivative and It's Photophysical Properties. ChemistryOpen 7, 639-44 (2018).
    [5] P. J. Cragg, Supramolecular chemistry : from biological inspiration to biomedical applications. Dordrecht ; New York: Springer (2010).
    [6] B. Valeur and I. Leray, Design principles of fluorescent molecular sensors for cation recognition. Coordination Chemistry Reviews 205, 3-40 (2000).
    [7] A. W. Czarnik, Fluorescent Chemosensors of Ion and Molecule Recognition - Recent Applications to Pyrophosphate and to Dopamine Sensing. Interfacial Design and Chemical Sensing 561, 314-23 (1994).
    [8] 蘇筱筑, 含羧基聚芴衍生物的合成,鑑定與其在化學感測器之應用. 成功大學化學工程學系學位論文, 1-87 (2013).
    [9] K. Cammann, U. Lemke, A. Rohen, J. Sander, H. Wilken, and B. Winter, Chemical Sensors and Biosensors-Principles and Applications. (1991).
    [10] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Seventh edition. ed. Australia: Cengage Learning (2018).
    [11] R. Giri, Temperature effect study upon the fluorescence emission of substituted coumarins. Spectrochimica Acta Part A: Molecular Spectroscopy 48, 843-8 (1992).
    [12] J. C. Koziar and D. O. Cowan, Photochemical heavy-atom effects. Accounts of Chemical Research 11, 334-41 (1978).
    [13] J. R. Lakowicz, Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer Academic/Plenum (1999).
    [14] J. S. Kim and D. T. Quang, Calixarene-Derived Fluorescent Probes. Chemical Reviews 107, 3780-99 (2007).
    [15] H. G. Loehr and F. Voegtle, Chromo- and fluoroionophores. A new class of dye reagents. Accounts of Chemical Research 18, 65-72 (1985).
    [16] Z. H. Kafafi, Organic electroluminescence. Optical engineering. Boca Raton, FL: CRC Press, Taylor & Francis (2005).
    [17] V. May and O. Kühn, Charge and energy transfer dynamics in molecular systems. 2nd, rev. and enl. ed. Weinheim, Chichester: Wiley-VCH, John Wiley (2004).
    [18] S. A. Hussain, An Introduction to Fluorescence Resonance Energy Transfer (FRET). Energy 132 (2009).
    [19] D. Marquis and J.-P. Desvergne, A cooperative effect in sodium cation complexation by a macrocyclic bis (9,10) anthraceno-crown ether in the ground state and in the excited state. Chemical Physics Letters 230, 131-6 (1994).
    [20] H. Bouas-Laurent, A. Castellan, M. Daney, J. P. Desvergne, G. Guinand, P. Marsau, and M. H. Riffaud, Cation-directed photochemistry of an anthraceno-crown ether. Journal of the American Chemical Society 108, 315-7 (1986).
    [21] Y. Hong, J. W. Lam, and B. Z. Tang, Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 4332-53 (2009).
    [22] J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, and B. Z. Tang, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 1740-1 (2001).
    [23] J. Wu, W. Liu, J. Ge, H. Zhang, and P. Wang, New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews 40, 3483-95 (2011).
    [24] L. Li, F. Liu, and H.-W. Li, Selective fluorescent probes based on CN isomerization and intramolecular charge transfer (ICT) for zinc ions in aqueous solution. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 79, 1688-92 (2011).
    [25] J.-S. Wu, W.-M. Liu, X.-Q. Zhuang, F. Wang, P.-F. Wang, S.-L. Tao, X.-H. Zhang, S.-K. Wu, and S.-T. Lee, Fluorescence Turn On of Coumarin Derivatives by Metal Cations:  A New Signaling Mechanism Based on C=N Isomerization. Organic Letters 9, 33-6 (2007).
    [26] A. Gupta and N. Kumar, A review of mechanisms for fluorescent ‘‘turn-on’’ probes to detect Al3+ ions. RSC Advances 6, 106413-34 (2016).
    [27] C. Azarias, Š. Budzák, A. D. Laurent, G. Ulrich, and D. Jacquemin, Tuning ESIPT fluorophores into dual emitters. Chemical Science 7, 3763-74 (2016).
    [28] S. Sasaki, G. P. C. Drummen, and G.-i. Konishi, Recent advances in twisted intramolecular charge transfer (TICT) fluorescence and related phenomena in materials chemistry. Journal of Materials Chemistry C 4, 2731-43 (2016).
    [29] H. Schiff, Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Annalen der Chemie 131, 118-9 (1864).
    [30] K. Senthil Kumar, Y. Bayeh, T. Gebretsadik, F. Elemo, M. Gebrezgiabher, M. Thomas, and M. Ruben, Spin-crossover in iron(ii)-Schiff base complexes. Dalton Transactions 48, 15321-37 (2019).
    [31] A. Kajal, S. Bala, S. Kamboj, N. Sharma, and V. Saini, Schiff Bases: A Versatile Pharmacophore. Journal of Catalysts 2013 (2013).
    [32] S. Mukherjee and S. Talukder, A reversible luminescent quinoline based chemosensor for recognition of Zn2+ ions in aqueous methanol medium and its logic gate behavior. Journal of Luminescence 177, 40-7 (2016).
    [33] Y. Zhou, H. N. Kim, and J. Yoon, A selective ‘Off–On’ fluorescent sensor for Zn2+ based on hydrazone–pyrene derivative and its application for imaging of intracellular Zn2+. Bioorganic & Medicinal Chemistry Letters 20, 125-8 (2010).
    [34] Y. W. Choi, G. J. Park, Y. J. Na, H. Y. Jo, S. A. Lee, G. R. You, and C. Kim, A single schiff base molecule for recognizing multiple metal ions: A fluorescence sensor for Zn(II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensors and Actuators B: Chemical 194, 343-52 (2014).
    [35] A. K. Mahapatra, S. K. Manna, C. D. Mukhopadhyay, and D. Mandal, Pyrophosphate-selective fluorescent chemosensor based on ratiometric tripodal-Zn(II) complex: Application in logic gates and living cells. Sensors and Actuators B: Chemical 200, 123-31 (2014).
    [36] Z. Dong, Y. Guo, X. Tian, and J. Ma, Quinoline group based fluorescent sensor for detecting zinc ions in aqueous media and its logic gate behaviour. Journal of Luminescence 134, 635-9 (2013).
    [37] C. Gao, X. Jin, X. Yan, P. An, Y. Zhang, L. Liu, H. Tian, W. Liu, X. Yao, and Y. Tang, A small molecular fluorescent sensor for highly selectivity of zinc ion. Sensors and Actuators B: Chemical 176, 775-81 (2013).
    [38] D. Sarkar, A. Pramanik, S. Jana, P. Karmakar, and T. K. Mondal, Quinoline based reversible fluorescent ‘turn-on’ chemosensor for the selective detection of Zn2+: Application in living cell imaging and as INHIBIT logic gate. Sensors and Actuators B: Chemical 209, 138-46 (2015).
    [39] W.-K. Dong, S. F. Akogun, Y. Zhang, Y.-X. Sun, and X.-Y. Dong, A reversible “turn-on” fluorescent sensor for selective detection of Zn2+. Sensors and Actuators B: Chemical 238, 723-34 (2017).
    [40] 鈴木章, 鈴木-宮浦カップリング(SMC)反応の問題点. TCIメール 142, 2-23 (2009).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE