簡易檢索 / 詳目顯示

研究生: 陳仁義
Chen, Ren-Yi
論文名稱: 高壓應用零電流切換電流饋入式轉換器之分析
Analysis of Current-Fed Converters with Zero-Current Switching for High-Voltage Applications
指導教授: 梁從主
Liang, Tsorng-Juu
陳建富
Chen, Jiann-Fuh
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 106
中文關鍵詞: 高壓零電流切換電流饋入
外文關鍵詞: Current-fed, High voltage, Zero-Current Switching
相關次數: 點閱:96下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電流饋入式轉換器因不須輸出濾波電感,而被廣泛應用在高電壓的應用場合上,本論文針對零電流切換電流饋入式轉換器在高電壓的應用提出一個廣泛性的探討。電流饋入式全橋昇壓型轉換器利用高壓變壓器之漏電感與雜散電容來達成零電流切換,為了在不同負載範圍和不同輸入電壓下都能達成零電流切換,昇壓型轉換器之導通時間需被保持固定,並且藉由頻率調變來調整輸出電壓。本論文也討論了穩態分析與不同負載範圍和不同輸入電壓下之零電流切換條件,並完成一輸入電壓22 ~ 27 V、輸出1 kV/ 1 kW之實驗室雛型電路來驗證與量測,實驗結果顯示此轉換器可以達成高輸出電壓增益,並且滿載最高效率為92%。
    在本論文中,電流饋入式全橋昇壓型轉換器也被使用在單級功率因數校正電路,同時利用具零電流切換之變頻控制技術來調節輸出電壓及達成高功率因數。本論文探討單級交/直流功率因數校正轉換器之動作原理、穩態分析與控制方法,同時也提供設計考量,並藉由一輸入電壓200 ~ 240 Vrms、輸出4 kV/1.2 kW之實驗室雛型電路來驗證其性能。另外,為了降低切換損失,將最大切換頻率限制在160 kHz,因此開關切換頻率是在50~160 kHz範圍內,在滿載與220 V輸入電壓下所測得之功率因數為0.995,並且轉換器效率為87.4%。
    傳統電流饋入式昇壓型轉換器之啟動湧入電流遠高於穩態時的電流,因此本論文提出一零電流切換之降壓饋入推挽式轉換器,以降低啟動湧入電流。本論文所提出之轉換器利用降壓開關來降低啟動湧入電流,並且達成定頻操作與完成一輸入電壓200V、輸出4 kV/1 kW之實驗室雛型電路來驗證其性能。實驗結果顯示電感之啟動湧入電流只略高於穩態時的電流,並且滿載最高效率為90%。
    冷陰極螢光燈是另一種形式的高壓應用,其燈管啟動電壓會高於2 kV,穩態電壓大約在1 kV。除了高電壓直流對直流轉換器之外,電流饋入式轉換器也常應用在電子式安定器。因此,本論文也提出一應用在冷陰極螢光燈之新型零電流切換雙電感電流饋入式並聯共振直流/交流轉換器。此換流器將變壓器之漏電感整合至諧振槽中,以降低漏感在開關所造成的電壓突波並達成零電流切換。本論文完成一實驗室雛型電路來驅動一長度為617 mm/7 W之冷陰極螢光燈,實驗結果顯示諧振換流器之開關操作在零電流切換,並且效率為86.8%。燈管電壓為977 V,且燈管電流為7 mA。

    Current-fed converters are widely applied in high-voltage applications because they need no output inductor. This dissertation presents a comprehensive study of current-fed converters with zero-current switching (ZCS) for high-voltage applications. The current-fed full-bridge boost converter can achieve ZCS by utilizing the leakage inductance and parasitic capacitance of the high-voltage transformer. In order to achieve ZCS under a wide load range and with various input voltages, the turn-on time of the boost converter is kept constant, and the output voltage is regulated via frequency modulation. The steady-state analysis and the ZCS operation conditions under various load and input-voltage conditions are also discussed. In this dissertation, a laboratory prototype converter with 22 ~ 27 V input voltage and 1 kV/1 kW output is implemented to verify the performance. The experimental results show that the converter can achieve high output voltage gain, and the highest efficiency of the converter is 92% at full-load condition with an input voltage of 27 V.
    In this dissertation, the current-fed full-bridge boost converter is also used for single-stage power-factor correction (PFC). The variable-frequency control scheme with ZCS is used to regulate the output voltage and to achieve high power factor. The operating principles, steady-state analysis, and control method of this single-stage AC-DC PFC converter are provided. The design guidelines are given and verified by a laboratory prototype converter with 200 ~ 240 Vrms input voltage and a 4 kV/1.2 kW output. In order to reduce the switching losses, the highest switching frequency is constrained at 160 kHz. Therefore, the switching frequency of the prototype converter is 50 ~ 160 kHz. The measured power factor is 0.995, and the efficiency is 87.4% at full-load condition with an input voltage of 220 Vrms.
    The start-up inrush current of conventional current-fed full-bridge boost converters is much higher than the normal current. In response to this concern, this dissertation also proposes a buck-fed push-pull converter with ZCS to reduce the start-up inrush current. The proposed converter utilizes buck switches to reduce the start-up inrush current and to operate with a constant switching frequency. A laboratory prototype converter with a 200V input voltage and 4 kV/1 kW output is implemented to verify the performance of the proposed converter. The experimental results show that the start-up currents of inductors are slightly larger than the steady-state currents, and the highest efficiency of the prototype circuit is 90% at full load.
    The cold-cathode fluorescent lamp (CCFL) is another type of high-voltage applications. The start-up voltage of a CCFL is higher than 2 kV, and the normal operating voltage is about 1 kV. Aside from high-voltage DC-DC converters, current-fed topologies are also applied in electronic ballasts. So, a new two-inductor current-fed parallel-resonant DC-AC converter with ZCS is also proposed for cold-cathode fluorescent lamps (CCFLs). The leakage inductance of the transformer is integrated as the resonant tank in order to reduce the voltage spikes across the switches and to achieve the ZCS operation. A laboratory prototype is implemented to drive a 617 mm/7 W CCFL. Experimental results indicate that the switches of the proposed resonant inverter are operated under the ZCS condition, and the efficiency is 86.8%. The lamp voltage is about 977 Vrms, and the lamp current is 7 mArms.

    LIST OF CONTENTS…………………………………………………….......................Ⅰ LIST OF FIGURES…………………………………………………….......................Ⅳ LIST OF TABLES……………………………………………………..............................Ⅷ CHAPTER 1 INTRODUCTION…………………………………………………………1 1.1 Motivation…………………………………………………………………………...1 1.2 Dissertation Outline…………………………………………………………………5 CHAPTER 2 CONVENTIONAL CURRENT-FED CONVERTERS FOR HIGH-VOLTAGE APPLICATIONS……………………………………..8 2.1 Current-Fed Full-Bridge Boost Converter…………………………………………..8 2.2 Active-Clamp Full-Bridge Boost Converter……………………………………….10 2.3 Full-Bridge ZCS Phase-Shift Boost Converter…………………………………….12 2.4 Current-Source Resonant Converter with ZCS…………………………………….14 2.5 The Equivalent Circuit of High-Voltage Transformer…………………………...15 CHAPTER 3 CURRENT-FED FULL-BRIDGE BOOST CONVERTER WITH ZCS FOR HIGH-VOLTAGE APPLICATIONS…………………..…………17 3.1 Operational Principle of Current-Fed Full-Bridge Boost Converter………………17 3.2 Steady State Analysis………………………………………………………………25 3.2.1 DC Voltage Gain………………………………………………………………...25 3.2.2 Considerations of ZCS ………………………………………………………….25 3.2.3 Voltage Stress and Current Stress……………………………………………….26 3.3 Design Considerations……………………………………………………………..27 3.4 Experimental Results………………………………………………………………29 3.5 Summary…………………………………………………………………………...31 CHAPTER 4 SINGLE-STAGE CURRENT-FED BOOST PFC CONVERTER WITH ZCS FOR HIGH-VOLTAGE APPLICATIONS………………………..35 4.1 Operational Principle of Current-Fed Boost PFC Converter………………………35 4.2 Steady-State and PFC Analysis ……………………………………………………42 4.2.1 DC Voltage Gain………………………………………………………………...42 4.2.2 Control of PFC…………………………………………………………………..43 4.2.3 Considerations of ZCS ………………………………………………………….46 4.3 Design Considerations……………………………………………………………..46 4.4 Experimental Results………………………………………………………………48 4.5 Summary…………………………………………………………………………...49 CHAPTER 5 BUCK-FED PUSH-PULL CONVERTER WITH ZCS FOR HIGH-VOLTAGE APPLICATIONS……………………………………54 5.1 Operational Principle of Buck-Fed Push-Pull Converter…………………………..56 5.2 Steady-State Analysis ……………………………………………………………...64 5.2.1 DC Voltage Gain………………………………………………………………...64 5.2.2 Considerations of ZCS ………………………………………………………….65 5.3 Design Considerations……………………………………………………………..65 5.4 Experimental Results………………………………………………………………67 5.5 Summary…………………………………………………………………………...68 CHAPTER 6 CURRENT-FED PARALLEL-RESONANT DC-AC CONVERTER WITH ZCS FOR COLD-CATHODE FLUORESCENT LAMPS…….72 6.1 Operational Principle of Current-Fed Parallel-Resonant Inverter…………………72 6.2 Steady-State Analysis ……………………………………………………………...79 6.3 Design Considerations……………………………………………………………..82 6.4 Experimental Results………………………………………………………………83 6.5 Summary…………………………………………………………………………...84 CHAPTER 7 CONCLUSIONS AND FUTURE WORK………………………………88 7.1 Conclusions ………………………………………………………………………..88 7.2 Recommended Future Work……………………………………………………….90 REFERENCES………………………………………………………………………….92 APPENDIX…………………………………………………..…………………………...99 VITA…………………………………………………………………..............................105 LIST OF PAPERS……………………………………………………............................106 LIST OF FIGURES Fig. 2.1. The circuit of the current-fed full-bridge boost converter. …………………….9 Fig. 2.2. The key waveforms for the current-fed full-bridge boost converter. …………10 Fig. 2.3. The active-clamp full-bridge boost converter. ………………………………..11 Fig. 2.4. The key waveforms for active-clamp full-bridge boost converter. …………..11 Fig. 2.5. The circuit of the full-bridge ZCS phase-shift boost converter……………….13 Fig. 2.6. The key waveforms for the full-bridge ZCS phase-shift boost converter. …...13 Fig. 2.7. The circuit of the current-source resonant converter. ………………………...14 Fig. 2.8. The key waveforms for the current-source resonant converter. ……………...15 Fig. 2.9. The practical equivalent circuit of a high voltage transformer. ………………16 Fig. 2.10. A simplified equivalent circuit with all secondary parameters referring to the primary side. ……………………..……………………………………….16 Fig. 3.1. The current-fed full-bridge boost converter circuit. ………………………….18 Fig. 3.2. The equivalent circuit of the current-fed full-bridge boost converter. ………..18 Fig. 3.3. The key waveforms for the current-fed full-bridge boost converter. …………19 Fig. 3.4. Operational modes during a half switching cycle of operation. ……………...24 Fig. 3.5. The control circuit diagram of the current-fed full-bridge boost converter…29 Fig. 3.6. The ZCS range under various load conditions. ………………………………30 Fig. 3.7. Experimental waveforms for VO at full-load condition. ……………………...32 Fig. 3.8. Experimental waveforms forVGS1, VGS2, VAB, and iLk at full-load condition and 20%-load conditions. …………………………………………………………32 Fig. 3.9. Switching waveforms for VGS1, VDS1, and iS1 at full-load condition and 20%-load conditions. …………………………………………………………33 Fig. 3.10. The comparison between the measured voltage gain and the theoretically voltage gain. …………………………………………………………………..33 Fig. 3.11. The measured efficiency of the prototype circuit. ……………………………34 Fig. 3.12. The measured switching frequency of the prototype circuit. ………………...34 Fig. 4.1. The current-fed boost PFC converter circuit. ………………………………...35 Fig. 4.2. The key waveforms for the current-fed boost PFC converter. ………………..40 Fig. 4.3. Operational modes of the current-fed boost PFC converter in a half-cycle of operation. ……………………………………………………………………..41 Fig. 4.4. The simplified representation of the inductor current waveform over the half line cycle. ……………………………………………………………………..45 Fig. 4.5. The fS variations over one fundamental period under different utility input ac voltage. ……………………………………………………………………….45 Fig. 4.6. The simplified representation of the power stage and the control block diagram………………………………………………………………………..45 Fig. 4.7. The allowable ZCS time range at maximum and minimum input voltages with various load conditions. ………………………………………………………50 Fig. 4.8. Experimental waveforms for VAB and iLk at full-load condition. ……………..50 Fig. 4.9. Experimental waveform for VO at full-load condition. ……………………….51 Fig. 4.10. Switching waveforms for VGE1, VCE1, and iS1 at full-load and 30%-load conditions. …………………………………………………………………….51 Fig. 4.11. Experimental waveforms for Vac and Iac at full-load condition (a) 50 ~ 220 kHz (b) 50 ~ 160 kHz. ……………………………………………………………..52 Fig. 5.1. The operation of an isolated boost converter during start-up transient period.55 Fig. 5.2. The key analytical waveforms during start-up transient period………………55 Fig. 5.3. The simulation waveforms during start-up transient period…………………..56 Fig. 5.4. The buck-fed push-pull converter circuit. ……………………………………57 Fig. 5.5. The key waveforms for the buck-fed push-pull converter. …………………...62 Fig. 5.6. Operational modes of the proposed circuit in a half-cycle of operation. ……..63 Fig. 5.7. The iLk waveforms under various resonant frequencies and characteristic impedance. ……………………………………………………………………67 Fig. 5.8. The ZCS range under various load conditions. ………………………………69 Fig. 5.9. Experimental waveform for VO at full-load condition. ……………………….69 Fig. 5.10. Experimental waveforms for VGB1, VO, iLB1, and iLB2 at full-load condition. …69 Fig. 5.11. Experimental waveforms for VG2, VG1,VAB, and iLk at full-load and 40%-load conditions. …………………………………………………………………….70 Fig. 5.12. Switching waveforms for VG1, VCE1, and iS1 at full-load and 40%-load conditions……………………………………………………………………..71 Fig. 5.13. The measured efficiency of the prototype circuit. ……………………………71 Fig. 6.1. Proposed resonant inverter circuit. …………………………………………...73 Fig. 6.2. Simplified circuit. …………………………………………………………….73 Fig. 6.3. Key waveforms for the proposed resonant inverter. ………………………….77 Fig. 6.4. Operational modes of the proposed circuit during a half switching cycle of operation. ……………………………………………………………………..78 Fig. 6.5. Variations in lamp voltage versus the switching frequency for various lamp impedances. …………………………………………………………………..80 Fig. 6.6. Variations in lamp voltage and THD versus the switching frequency for various values of Q. …………………………………………………………………...81 Fig. 6.7. Variations in lamp voltage versus the switching frequency for various values of LS. ……………………………………………………………………………..81 Fig. 6.8. The simplified control block diagram of the proposed CCFL driver. ………..85 Fig. 6.9. Experimental waveforms for VLamp and iLamp (a) at ignition and (b) at steady state. …………………………………………...………………..85 Fig. 6.10. Experimental waveforms for VGS1, VGS2, VAB, and iLs. ………………………..86 Fig. 6.11. Experimental waveforms for VGS1, VDS1, and iS1. …………………………….86 Fig. 6.12. Experimental waveforms for dimming signal and iLamp under burst-mode dimming control. ……………………………………………………………..87 Fig. 6.13. Output illuminance of lamp versus the duty cycle. …………………………..87 LIST OF TABLES Table 4.1. Measured input power factor, total current harmonic distortion, and efficiency. (a) 50 ~ 220 kHz. (b) 50 ~ 160 kHz. …………………………………………53

    [1] L. Sivan, Microwave TubeTransmitters, 1st, Chapman and Hall London, 1994.
    [2] T. K. Phelps and G. I. Cardwel, “A lightweight high efficiency family of power conditioners for space TWTs,” Proc. IEEE IVEC’00 Conf., 2000.
    [3] J. D. Gandoy, R. Pasandin, and J. Marcos, “High voltage power supply for rotary die laser cutting system,” Proc. IEEE PESC’02 Conf., pp. 1177-1180, 2002.
    [4] A. I. Pressman, Switching Power Supply Design, Mc-Graw-Hill Co. 2/e, 1999.
    [5] E. T. Calkin and B. H. Hamilton, “A conceptually new approach for regulated DC to DC converters employing transistor switches and pulsewidth control,” IEEE Trans. Ind. Applicat., vol. IA-12, pp. 369-377, July 1976.
    [6] B. P. Israelsen, J. R. Martin, C. R. Reeve, and V. S. Scown, “A 2.5 kV high-reliability TWT power supply : design techniques for high efficiency and low ripple,” Proc. IEEE PESC’77 Conf., pp. 212-222, 1977.
    [7] R. Redl and N. O. Sokal, “Push-pull current-fed multiple-output DC/DC power converter with only one inductor and with 0 to 100% switch duty ratio,” Proc. IEEE PESC’80 Conf., pp. 341-345, 1980.
    [8] P. J. Wolfs, “ Current-sourced DC-DC converter derived via the duality principle from the half-bridge converter,” IEEE Trans. Ind. Electron., vol. 40, pp.139-144, Feb. 1993.
    [9] S. Ohtsu, T. Yamashita, K. Yamamoto, and T. Sugiura, “Stability in high-output-voltage push-pull current–fed converters,” IEEE Trans. Power Electron., vol. 8, pp. 135-139, 1993.
    [10] D. W. Shimer, A. C. Lange and J. N. Bombay, “A high-power switch-mode DC power supply for dynamic loads,” Proc. IEEE Industry Applications Soc. Annu. Meeting, pp. 1097-1105, 1994.
    [11] I. Barbi, “A comparison between two current-fed push-pull DC-DC converters - analysis, design and experimentation,” Proc. IEEE INTELEC’96 Conf., pp. 313-320, 1996.
    [12] P. M. Barbosa and I. Barbi, “A new current-fed, isolated PWM DC-DC converter,” IEEE Trans. Power Electron., vol. 11, pp. 431-438, May 1996.
    [13] K. Wang, F. C. Lee, and J. Lai, “Bi-directional full-bridge dc/dc converter with unified soft-switching scheme, part I: principles of operation,” Proc. VPEC Annu. Sem., pp.143-149, 1998.
    [14] K. Wang, F. C. Lee, and J. Lai, “Bi-directional full-bridge dc/dc converter with unified soft-switching scheme, part II: design, implementation, and exerimental results,” Proc. VPEC Annu. Sem., pp.151-157, 1998.
    [15] P. M. Barbosa and I. Barbi, “A single-switch flyback-current-fed DC–DC Converter,” IEEE Trans. Power Electron., vol. 13, pp. 466-475, May 1998.
    [16] D. A. Ruiz-Caballero and I. Barbi, “A new flyback-current-fed push-pull DC-DC converter,” IEEE Trans. Power Electron., vol. 14, pp. 1056-1064, Nov. 1999.
    [17] K. Wang, L. Zhu, D. Qu, H. Odendaal, J. Lai, and F. C. Lee, “Design, implementation and experimental results of bi-directional full bridge DC/DC converter with unified soft-switching scheme and soft-starting Capability,” Proc. IEEE ESC’00 Conf., pp.1058-1063, 2000.
    [18] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proc. Electr. Power Appl., vol. 151, No. 2, pp.182-190, Mar. 2004.
    [19] Y. Jang and M. M. Jovanovic, “New two-inductor boost Converter with auxiliary transformer,” IEEE Trans. Power Electron., vol. 19, pp. 169-175, Jan. 2004.
    [20] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback set-up converter” , IEE Proc. Electr. Power Appl., vol. 152, No. 2, pp. 217-225, Mar. 2005.
    [21] S. D. Johnson, A. F. Witulski, and R. W. Erickson, “Comparison of resonant topologies in high-voltage DC applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 24, pp.263-274, May 1988.
    [22] H. Hino, T. Hatakeyama, and M. Nakaoka, “Resonant PWM inverter linked DC-DC converter using parasitic impedance of high-voltage transformer and its applications to X-ray generator,” Proc. IEEE PESC’88 Conf., pp. 1212-1219, 1988.
    [23] V. Garcia, M. Rico, J. Sebastian, M. M. Hernando, and J. Uceda, “ An optimized DC-to-DC converter topology for high-voltage pulse-load applications,” Proc. IEEE PESC’94 Conf., pp. 1413-1421, 1994.
    [24] G. Hua and F. C. Lee, “Novel full-bridge zero-current-switched PWM converter,” Proc. European Conf. on Power Electronics and Applications, pp. 29-34, 1991.
    [25] C. Iannello, S. Luo, and I. Batarseh, “Full bridge ZCS PWM converter for high-voltage high-power applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, pp. 515-525, Apr. 2002.
    [26] C. Iannello, S. Luo and I. Batarseh, “Small-signal and transient analysis of a full-bridge, zero-current-switched PWM converter using an average model,” IEEE Trans. Power Electron., vol. 18, pp.793-801, May 2003.
    [27] H. Benqassmi, J. P. Ferrieux, and J. Barbaroux, “Current-source resonant converter in power factor correction,” Proc. IEEE PESC’97 Conf., pp. 378-384, 1997.
    [28] K. H. Liu, “High-frequency quasi-resonant converters techniques,” Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Oct. 1986.
    [29] E. X. Yang, Y. Jiang, G. Hua, and F. C. Lee, “Isolated boost circuit for power factor correction,” Proc. IEEE APEC’93 Conf., pp. 196-203, 1993.
    [30] R. Watson and F. C. Lee, “A soft-switched full-bridge boost converter employing an active clamp circuit,” Proc. IEEE PESC’96 Conf., pp. 1948-1954, 1996.
    [31] G. V. Torrico Bascope and I. Barbi, “Isolated flyback-current-fed push-pull converter for power factor correction,” Proc. IEEE PESC’96 Conf., pp. 1184-1190, 1996.
    [32] J. G. Cho, C. Y. Jeong, H. S. Lee, and G. H. Rim, “Novel zero-voltage-transition current-fed full-bridge PWM converter for single-stage power factor correction,” IEEE Trans. Power Electron., vol. 13, pp.1005-1012, Nov. 1998.
    [33] G. Moschopoulos and P. Jain, “Single-stage ZVS PWM full-bridge converter,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, pp. 1122-1133, Oct. 2003.
    [34] R. W. Erickson and D. Maksimović, “Fundamentals of power electronics,” 2nd, New York: John Wiley, 1950.
    [35] J. P. Noon, “Designing high-power factor off-line power supplies,” Proc. Unitrode Power Supplay Design Seminar, pp. 2.1-2.35, 2003.
    [36] J. S. Won, J. H. Kim, G. P. Cho, D. H. Kim, C. C. Ro, M. H. Kim and M. Nakaoka, “Current-fed push-pull type high frequency resonant inverter for wax-sealing,” Proc. IEEE IECON’00 Conf., pp. 332-337, 2000.
    [37] A. P. Hu, G. A. Covic, and J. T. Boys, “Direct ZVS start-up of a current-fed resonant inverter,” IEEE Power Electron Lett., vol. 21, pp. 809-812, May 2006.
    [38] J. Lam and P. K. Jain, “A novel concept of employing current source inverter in valley fill electronic ballasts with dimming capability and low crest factor,” Proc. IEEE PESC’06 Conf., pp. 1-7, 2006.
    [39] D. L. Jose, R. G. Stewart, and W. R. Roach, “A novel large area color LCD backlight system,” Proc. IEEE NAECON’90 Conf., pp. 275-277, 1990.
    [40] J. Mark and J. A. O’Connor, “Resonant fluorescent lamp converter provides efficient and compact solution,” Proc. IEEE APEC’93 Conf., pp. 424-431, 1993.
    [41] Y. L. Lin and A. F. Witulski, “Analysis and design of current-fed push-pull resonant inverters-cold cathode fluorescent lamp drivers,” Proc. IEEE IAS’96 Conf., pp. 2149-2152, 1996.
    [42] M. S. Lin, W. J. Ho, F. Y. Shih, D. Y. Chen, and Y. P. Wu, “A cold-cathode fluorescent lamp driver circuit with synchronous primary-side dimming control,” IEEE Trans. Ind. Electron., vol. 45, pp. 249-255, Apr. 1998.
    [43] H. K. Gie, C. L. Young, and H. Y. Seung, “An analysis of the backlight inverter by topologies,” Proc. IEEE ISIE’01 Conf., pp. 896-900, 2001.
    [44] J. A. Donahue and M. M. Jovanovic, “The LCC inverter as a cold cathode fluorescent lamp driver,” Proc. IEEE APEC’94 Conf., pp. 427-433, 1994.
    [45] C. C. Chen, H. S. Nien, C. L. Shen, and T. F. Wu, “Design and development of digital control multi-lamp back-light modules for TFT-LCD TV,” Proc. IEEE IAS’05 Conf., pp. 2340-2346, 2005.
    [46] Y. K. Lo, K. J. Pai, and S. C. Yen, “A high-voltage input backlight module driver for multi-lamp LCD panels,” Proc. IEEE PEDS’05 Conf., pp. 663-665, 2005.
    [47] C. H. Lin, C. L. Ou, T. S. Liu, K. J. Pai, and J. H. Su, “A multi-lamp current sharing controller using current-mirror technique for LCD backlight module,” Proc. IEEE PESC’06 Conf., pp. 1027-1032, 2006.
    [48] C. C. Chen, T. F. Wu, and Y. T. Chuang, “Multiphase driving system for LCD back-light lamps with current balancing feature,” IEEE Trans. Plasma Sci., vol. 34, pp. 435-442, Apr. 2006.
    [49] R. L. Lin and C. H. Wen, “PLL control scheme for the electronic ballast with a current-equalization network,” IEEE Journal of Display Technology, vol. 2, pp. 160-169, June 2006.
    [50] M. K. Kazimierczuk and R. C. Cravens, “Current-source parallel-resonant DC/AC inverter with transformer,” IEEE Trans. Power Electron., vol. 11, pp. 275-284, Mar. 1996.
    [51] J. M. Alonso, J. García, A. J. Calleja, J. Ribas, and J. Cardesín, “Analysis, design, and experimentation of a high-voltage power supply for ozone generation based on current-fed parallel-resonant push–pull inverter,” IEEE Trans. Ind. Applicat., vol. 41, pp. 1364-1372, Oct. 2005.
    [52] S. W. Lee, D. Y. Ko, D. Y. Huh, and Y. I. Yoo, “Simplified control technique for LCD backlight inverter system using the mixed dimming method,” Proc. IEEE APEC’01 Conf., pp. 447-453, 2001.
    [53] C. H. Lin, “The design and implementation of a new digital dimming controller for the backlight resonant inverter,” IEEE Trans. Power Electron., vol. 20, pp. 1459-1466, Nov. 2005.
    [54] H. Y. Lu, J. G. Zhu, V. S. Ramsden, and S. Y. R. Hui, “Measurement and modeling
    of stray capacitances in high frequency transformers,” Proc. IEEE PESC'99, pp.
    763-768, 1999.
    [55] L. Zhu, K. Wang, F. C. Lee, and J. S. Lai, “New start-up schemes for isolated
    full-bridge boost Converters,” IEEE Trans. Power Electron., vol. 18, pp. 946-951,
    July 2003.

    下載圖示 校內:2012-10-09公開
    校外:2012-10-09公開
    QR CODE