研究生: |
邱泓鈞 Chiu, Hung-Chun |
---|---|
論文名稱: |
高效能鐵-鈣氧化物中性環境水氧化觸媒之開發 Iron-calcium Oxide as an Efficient Catalyst for Electrocatalytic Oxygen Evolution under Neutral Conditions |
指導教授: |
林家裕
Lin, Chia-Yu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 鈣鐵氧化物 、鉍釩氧化物 、水氧化 、光電化學水分解 |
外文關鍵詞: | Bismuth vanadate, Calcium iron oxide, Oxygen evolution, Photoelectrochemical water splitting |
相關次數: | 點閱:81 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功合成不同鈣含量之鐵-鈣氧化物薄膜,並對其在中性環境下之電催化水氧化性能做全面性地探討。鐵-鈣氧化物之晶相、化學組成以及電催化性能係藉由X光繞射、拉曼光譜、感應耦合電漿質譜、循環伏安法、線性掃描伏安法和定電流電解等技術與實驗進行分析。研究發現未摻入鈣所得之薄膜具有磁赤鐵礦的結晶相,且對於磷酸根離子並無明顯的反應性;但摻入鈣而合成之薄膜,由於失去了長程序化之特性而在表面展現出對於磷酸根離子之高反應性。無論施加電流密度與否,磷酸鹽的存在造成鐵-鈣氧化物表面的鈣析出並且在薄膜表面形成具電活性之磷酸鐵。鐵-鈣氧化物之塔弗斜率和交換電流密度都會隨著摻入鈣濃度的上升而上升,意味著鈣的摻入不只改變了水氧化反應的機制也增強了其電催化水氧化之活性。當摻入最佳化的鈣濃度之後,所製備之鐵-鈣氧化物薄膜的電活性更勝於至今於中性環境下有著最優異性能的氧化鈷水氧化觸媒。以最佳化條件所製備之鈣-鐵氧化物薄膜於1.0 M酸鹼值7的磷酸鹽緩衝溶液中,僅需過電位0.65伏特來維持10毫安培電流密度或者0.12 s-1轉換速率。當鐵-鈣氧化物修飾於鉍釩氧化物光陽極時,不僅其表面水氧化反應電洞傳遞之動力有顯著之提高,其光電催化水氧化之光電流和光穩定性也大為提升。
Iron-calcium oxide (CaFeOx) thin film with tunable calcium contents were synthesized, and their electrocatalytic properties towards the oxygen evolution reaction (OER) in neutral aqueous conditions were investigated. Crystal phase, chemical composition, and electrocatalytic properties of the synthesized CaFeOx thin films were characterized using X-ray diffraction, Raman spectroscopy, inductively coupled plasma mass spectrometry, cyclic voltammetry, linear sweep voltammetry, and controlled-current electrolysis. It was found that the prepared thin film without the incorporation of calcium has -Fe2O3 crystalline phase and exhibits minimal reactivity to phosphate, but those with the incorporation of calcium losses their long-range order and displays high surface reactivity to phosphate ions to form redox-active iron phosphate on their surface. The leaching of surface calcium in CaFeOx occurred in presence of phosphate regardless of applied current density. In addition, Tafel slope along with exchange current density of CaFeOx thin films increased with increasing calcium, suggesting the incorporation of calcium modifies OER mechanism and enhances electrocatalytic activity of CaFeOx thin film. With optimal calcium content, the activity and stability of CaFeOx outperformed those of CoPi, a state-of-art Earth-abundant material based OER catalyst in neutral aqueous media reported to date, under high turnover conditions. An overpotential of 0.65 V was required for CaFeOx to maintain a current density of 10 mA cm-2 (or a turnover frequency of 0.12 s-1) in 1.0 M phosphate buffer (pH 7). When being integrated onto the BiVO4 photoanode, CaFeOx facilitated the kinetics of OER and interfacial hole transfer, resulting in remarkable enhancement in photocurrent response and photostability of the BiVO4 photoanode.
1. M. K. Hubbert, 1956.
2. (a) F. Y. Cheng and J. Chen, Chemical Society Reviews, 2012, 41, 2172-2192; (b) M. S. Dresselhaus and I. L. Thomas, Nature, 2001, 414, 332-337.
3. A. J. Bard, L. R. Faulkner, J. Leddy and C. G. Zoski, Electrochemical methods: fundamentals and applications, Wiley New York, 1980.
4. (a) R. Frydendal, E. A. Paoli, B. P. Knudsen, B. Wickman, P. Malacrida, I. E. Stephens and I. Chorkendorff, ChemElectroChem, 2014, 1, 2075-2081; (b) Y. Lee, J. Suntivich, K. J. May, E. E. Perry and Y. Shao-Horn, The journal of physical chemistry letters, 2012, 3, 399-404.
5. S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B. R. Shrestha, S. Merzlikin, B. Breitbach and A. Ludwig, Catalysis Today, 2016, 262, 170-180.
6. (a) R. Kötz, H. Lewerenz and S. Stucki, Journal of the Electrochemical Society, 1983, 130, 825-829; (b) R. Kötz, H. Neff and S. Stucki, Journal of the Electrochemical Society, 1984, 131, 72-77.
7. J. D. Blakemore, R. H. Crabtree and G. W. Brudvig, Chemical Reviews, 2015, 115, 12974-13005.
8. N. T. Suen, S. F. Hung, Q. Quan, N. Zhang, Y. J. Xu and H. M. Chen, Chemical Society Reviews, 2017, 46, 337-365.
9. (a) J. B. Cheng, H. M. Zhang, G. B. Chen and Y. N. Zhang, Electrochimica Acta, 2009, 54, 6250-6256; (b) M. E. G. Lyons and S. Floquet, Physical Chemistry Chemical Physics, 2011, 13, 5314-5335.
10. T. Audichon, T. W. Napporn, C. Canaff, C. Morais, C. Comminges and K. B. Kokoh, Journal of Physical Chemistry C, 2016, 120, 2562-2573.
11. (a) Y. Matsumoto, S. Yamada, T. Nishida and E. Sato, Journal of the Electrochemical Society, 1980, 127, 2360-2364; (b) J. O. M. Bockris and T. Otagawa, Journal of the Electrochemical Society, 1984, 131, 290-302; (c) J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and Y. Shao-Horn, Science, 2011, 334, 1383-1385; (d) A. Vojvodic and J. K. Nørskov, Science, 2011, 334, 1355-1356; (e) M. G. De Chialvo and A. Chialvo, Electrochimica Acta, 1993, 38, 2247-2252; (f) I. Nikolov, R. Darkaoui, E. Zhecheva, R. Stoyanova, N. Dimitrov and T. Vitanov, Journal of Electroanalytical Chemistry, 1997, 429, 157-168; (g) R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic and N. M. Markovic, Nature materials, 2012, 11, 550; (h) H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, Nano letters, 2015, 15, 1421-1427; (i) F. Song and X. Hu, Nature communications, 2014, 5; (j) M. W. Kanan and D. G. Nocera, Science, 2008, 321, 1072-1075; (k) M. W. Kanan, Y. Surendranath and D. G. Nocera, Chemical Society Reviews, 2009, 38, 109-114.
12. (a) D. K. Bediako, Y. Surendranath and D. G. Nocera, Journal of the American Chemical Society, 2013, 135, 3662-3674; (b) M. Huynh, D. K. Bediako and D. G. Nocera, Journal of the American Chemical Society, 2014, 136, 6002-6010.
13. (a) P. Ganesan, M. Prabu, J. Sanetuntikul and S. Shanmugam, ACS Catalysis, 2015, 5, 3625-3637; (b) C. Xia, Q. Jiang, C. Zhao, M. N. Hedhili and H. N. Alshareef, Advanced Materials, 2016, 28, 77-85; (c) Y. R. Zheng, M. R. Gao, Q. Gao, H. H. Li, J. Xu, Z. Y. Wu and S. H. Yu, Small, 2015, 11, 182-188; (d) Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu, W. Zhang, Y. Zhi, C. Wang, C. Xiao and S. Wei, Journal of the American Chemical Society, 2014, 136, 15670-15675.
14. (a) P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu and Y. Xie, Angewandte Chemie, 2015, 127, 14923-14927; (b) K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu and Y. Xie, Journal of the American Chemical Society, 2015, 137, 4119-4125; (c) B. You, N. Jiang, M. Sheng, M. W. Bhushan and Y. Sun, ACS Catalysis, 2015, 6, 714-721.
15. (a) B. Wurster, D. Grumelli, D. Hötger, R. Gutzler and K. Kern, Journal of the American Chemical Society, 2016, 138, 3623-3626; (b) S. W. Sheehan, J. M. Thomsen, U. Hintermair, R. H. Crabtree, G. W. Brudvig and C. A. Schmuttenmaer, Nature communications, 2015, 6.
16. N. Zhang, M.-Q. Yang, S. Liu, Y. Sun and Y.-J. Xu, Chemical Reviews, 2015, 115, 10307-10377.
17. (a) E. Mirzakulova, R. Khatmullin, J. Walpita, T. Corrigan, N. M. Vargas-Barbosa, S. Vyas, S. Oottikkal, S. F. Manzer, C. M. Hadad and K. D. Glusac, Nature chemistry, 2012, 4, 794-801; (b) Y. Cheng, C. Xu, L. Jia, J. D. Gale, L. Zhang, C. Liu, P. K. Shen and S. P. Jiang, Applied Catalysis B: Environmental, 2015, 163, 96-104.
18. F. Mattos-Costa, P. de Lima-Neto, S. Machado and L. Avaca, Electrochimica Acta, 1998, 44, 1515-1523.
19. D. F. Abbott, D. Lebedev, K. Waltar, M. Povia, M. Nachtegaal, E. Fabbri, C. Copéret and T. J. Schmidt, Chemistry of Materials, 2016, 28, 6591-6604.
20. M. Vuković, Journal of applied electrochemistry, 1987, 17, 737-745.
21. S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe and N. Nishiyama, Nature communications, 2015, 6, 8249.
22. Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu and Z. Shao, Chemistry of Materials, 2016, 28, 1691-1697.
23. M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Han and L. Guo, Nanoscale, 2015, 7, 8920-8930.
24. M. S. Al-Hoshan, J. P. Singh, A. M. Al-Mayouf, A. A. Al-Suhybani and M. N. Shaddad, International Journal of Electrochemical Science, 2012, 7, 4959-4973.
25. S. Hirai, S. Yagi, A. Seno, M. Fujioka, T. Ohno and T. Matsuda, RSC Advances, 2016, 6, 2019-2023.
26. J. A. Koza, Z. He, A. S. Miller and J. A. Switzer, Chemistry of Materials, 2012, 24, 3567-3573.
27. Z. Chen, C. X. Kronawitter and B. E. Koel, Physical Chemistry Chemical Physics, 2015, 17, 29387-29393.
28. M. Al‐Mamun, X. Su, H. Zhang, H. Yin, P. Liu, H. Yang, D. Wang, Z. Tang, Y. Wang and H. Zhao, Small, 2016, 12, 2866-2871.
29. R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic and N. M. Markovic, Nature materials, 2012, 11, 550-557.
30. H. Bode, K. Dehmelt and J. Witte, Electrochimica Acta, 1966, 11, 1079IN1071-1087.
31. X. Long, J. Li, S. Xiao, K. Yan, Z. Wang, H. Chen and S. Yang, Angewandte Chemie, 2014, 126, 7714-7718.
32. O. Diaz-Morales, I. Ledezma-Yanez, M. T. M. Koper and F. Calle-Vallejo, ACS Catalysis, 2015, 5, 5380-5387.
33. Z. Lu, H. Wang, D. Kong, K. Yan, P.-C. Hsu, G. Zheng, H. Yao, Z. Liang, X. Sun and Y. Cui, Nature communications, 2014, 5.
34. R. D. Smith, M. S. Prévot, R. D. Fagan, S. Trudel and C. P. Berlinguette, Journal of the American Chemical Society, 2013, 135, 11580-11586.
35. (a) J. O. M. Bockris, The Journal of Chemical Physics, 1956, 24, 817-827; (b) A. Damjanovic, A. Dey and J. M. Bockris, Electrochimica Acta, 1966, 11, 791-814; (c) B. Conway and M. Salomon, Electrochimica Acta, 1964, 9, 1599-1615; (d) B. Conway and P. Bourgault, Canadian Journal of Chemistry, 1962, 40, 1690-1707.
36. A. Appleby, in Modern aspects of electrochemistry, Springer, 1974, pp. 369-478.
37. A. Riddiford, Electrochimica Acta, 1961, 4, 170-178.
38. W. H. Wade and N. Hackerman, Transactions of the Faraday Society, 1957, 53, 1636-1647.
39. (a) R. I. Cukier and D. G. Nocera, Annual review of physical chemistry, 1998, 49, 337-369; (b) M. H. V. Huynh and T. J. Meyer, Chemical Reviews, 2007, 107, 5004-5064; (c) T. A. Betley, Q. Wu, T. Van Voorhis and D. G. Nocera, Inorganic chemistry, 2008, 47, 1849-1861.
40. (a) I. Vass and S. Styring, Biochemistry, 1991, 30, 830-839; (b) P. Geijer, F. Morvaridi and S. Styring, Biochemistry, 2001, 40, 10881-10891; (c) K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Science, 2004, 303, 1831-1838; (d) G. Ananyev and G. C. Dismukes, Photosynthesis research, 2005, 84, 355-365.
41. (a) J. Limburg, G. W. Brudvig and R. H. Crabtree, Journal of the American Chemical Society, 1997, 119, 2761-2762; (b) J. Limburg, J. S. Vrettos, H. Chen, J. C. de Paula, R. H. Crabtree and G. W. Brudvig, Journal of the American Chemical Society, 2001, 123, 423-430; (c) M. Yagi and K. Narita, Journal of the American Chemical Society, 2004, 126, 8084-8085; (d) K. Beckmann, H. Uchtenhagen, G. Berggren, M. F. Anderlund, A. Thapper, J. Messinger, S. Styring and P. Kurz, Energy & Environmental Science, 2008, 1, 668-676; (e) R. Brimblecombe, G. F. Swiegers, G. C. Dismukes and L. Spiccia, Angewandte Chemie, 2008, 120, 7445-7448; (f) R. Brimblecombe, D. R. Kolling, A. M. Bond, G. C. Dismukes, G. F. Swiegers and L. Spiccia, Inorganic chemistry, 2009, 48, 7269-7279; (g) R. Brimblecombe, A. Koo, G. C. Dismukes, G. F. Swiegers and L. Spiccia, Journal of the American Chemical Society, 2010, 132, 2892-2894; (h) M. M. Najafpour and A. N. Moghaddam, Dalton Transactions, 2012, 41, 10292-10297.
42. (a) A. Ramírez, P. Bogdanoff, D. Friedrich and S. Fiechter, Nano Energy, 2012, 1, 282-289; (b) T. Takashima, K. Hashimoto and R. Nakamura, Journal of the American Chemical Society, 2012, 134, 1519-1527; (c) T. Takashima, K. Hashimoto and R. Nakamura, Journal of the American Chemical Society, 2012, 134, 18153-18156; (d) M. M. Najafpour, K. C. Leonard, F.-R. F. Fan, M. A. Tabrizi, A. J. Bard, C. K. King'ondu, S. L. Suib, B. Haghighi and S. I. Allakhverdiev, Dalton Transactions, 2013, 42, 5085-5091; (e) A. Yamaguchi, R. Inuzuka, T. Takashima, T. Hayashi, K. Hashimoto and R. Nakamura, Nature communications, 2014, 5.
43. D. González‐Flores, I. Zaharieva, J. Heidkamp, P. Chernev, E. Martínez‐Moreno, C. Pasquini, M. R. Mohammadi, K. Klingan, U. Gernet and A. Fischer, ChemSusChem, 2015.
44. D. A. Lutterman, Y. Surendranath and D. G. Nocera, Journal of the American Chemical Society, 2009, 131, 3838-3839.
45. A. Minguzzi, F.-R. F. Fan, A. Vertova, S. Rondinini and A. J. Bard, Chemical Science, 2012, 3, 217-229.
46. M. Chen, Y. Wu, Y. Han, X. Lin, J. Sun, W. Zhang and R. Cao, ACS Applied Materials & Interfaces, 2015, 7, 21852-21859.
47. I. Zaharieva, P. Chernev, M. Risch, K. Klingan, M. Kohlhoff, A. Fischer and H. Dau, Energy & Environmental Science, 2012, 5, 7081-7089.
48. Y. Zhang, B. Cui, C. Zhao, H. Lin and J. Li, Physical Chemistry Chemical Physics, 2013, 15, 7363-7369.
49. A. Bergmann, I. Zaharieva, H. Dau and P. Strasser, Energy & Environmental Science, 2013, 6, 2745-2755.
50. K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park and D. Kim, Journal of the American Chemical Society, 2014, 136, 7435-7443.
51. D. Jeong, K. Jin, S. E. Jerng, H. Seo, D. Kim, S. H. Nahm, S. H. Kim and K. T. Nam, ACS Catalysis, 2015, 5, 4624-4628.
52. J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong and J. Kim, Journal of the American Chemical Society, 2014, 136, 4201-4211.
53. Z.-P. Nie, D.-K. Ma, G.-Y. Fang, W. Chen and S.-M. Huang, Journal of Materials Chemistry A, 2016, 4, 2438-2444.
54. Y.-H. Lai, C.-Y. Lin, Y. Lv, T. C. King, A. Steiner, N. M. Muresan, L. Gan, D. S. Wright and E. Reisner, Chemical Communications, 2013, 49, 4331-4333.
55. B.-S. Lee, S. H. Ahn, H.-Y. Park, I. Choi, S. J. Yoo, H.-J. Kim, D. Henkensmeier, J. Y. Kim, S. Park and S. W. Nam, Applied Catalysis B: Environmental, 2015, 179, 285-291.
56. T. W. Kim and K.-S. Choi, Science, 2014, 343, 990-994.
57. (a) A. Grosvenor, B. Kobe, M. Biesinger and N. McIntyre, Surface and Interface Analysis, 2004, 36, 1564-1574; (b) S. Poulin, R. Franca, L. Moreau-Belanger and E. Sacher, Journal of Physical Chemistry C, 2010, 114, 10711-10718.
58. L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, H. Li and Z. Zhu, Sensors and Actuators B: Chemical, 2012, 161, 209-215.
59. S. L. Stipp and M. F. Hochella, Geochimica et Cosmochimica Acta, 1991, 55, 1723-1736.
60. (a) T. Sugama, L. Kukacka, N. Carciello and N. Hocker, Cement and Concrete Research, 1989, 19, 857-867; (b) W. Gu, D. W. Bousfield and C. P. Tripp, Journal of Materials Chemistry, 2006, 16, 3312-3317.
61. (a) Y. Obukuro, K. Obata, R. Maeda, S. Matsushima, Y. Okuyama, N. Matsunaga and G. Sakai, Journal of the Ceramic Society of Japan, 2015, 123, 995-998; (b) A. Šutka, M. Kodu, R. Pärna, R. Saar, I. Juhnevica, R. Jaaniso and V. Kisand, Sensors and Actuators B: Chemical, 2016, 224, 260-265.
62. S. Dhankhar, K. Gupta, G. Bhalerao, N. Shukla, M. Chandran, B. Francis, B. Tiwari, K. Baskar and S. Singh, RSC Advances, 2015, 5, 92549-92553.
63. B.-j. Xue, J. Luo, F. Zhang and Z. Fang, Energy, 2014, 68, 584-591.
64. M. M. Najafpour, T. Ehrenberg, M. Wiechen and P. Kurz, Angewandte Chemie International Edition, 2010, 49, 2233-2237.
65. (a) D. De Faria, S. Venâncio Silva and M. De Oliveira, Journal of Raman Spectroscopy, 1997, 28, 873-878; (b) Y. El Mendili, J. F. Bardeau, N. Randrianantoandro, A. Gourbil, J. M. Greneche, A. M. Mercier and F. Grasset, Journal of Raman Spectroscopy, 2011, 42, 239-242.
66. (a) K. J. McKenzie and F. Marken, Pure and applied chemistry, 2001, 73, 1885-1894; (b) C.-Y. Lin and C.-T. Chang, Sensors and Actuators B: Chemical, 2015, 220, 695-704.
67. F. Marken, D. Patel, C. E. Madden, R. C. Millward and S. Fletcher, New journal of chemistry, 2002, 26, 259-263.
68. F. M. Toma, J. K. Cooper, V. Kunzelmann, M. T. McDowell, J. Yu, D. M. Larson, N. J. Borys, C. Abelyan, J. W. Beeman and K. M. Yu, Nature communications, 2016, 7.