| 研究生: |
楊煒晉 Yang, Wei-Chin |
|---|---|
| 論文名稱: |
應用於電池系統之低市頻漣波雙向CLLC諧振轉換器 Bidirectional CLLC Resonant Converter with Low Line-Frequency Ripple for Battery Power System |
| 指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 雙向功率傳輸 、直流-直流電源轉換器 、零電壓切換 、零電流切換 、降低市頻漣波 |
| 外文關鍵詞: | bidirectional power flow, DC-DC power converters, zero voltage switching, zero current switching, double line frequency reduction |
| 相關次數: | 點閱:87 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統充電轉換器之輸出含有市頻漣波成分,而造成高電流漣波而影響電池壽命。本論文研製具數位控制之低市電漣波隔離型雙向CLLC諧振轉換器,利用雙迴路控制處理回授之輸出與系統頻率的調節,其中外迴路利用輸出直流電壓控制CLLC之中心頻率,內迴路利用輸出漣波調整操作頻率達到抑制低頻漣波效果。本論文藉由穩態分析並實作一低市頻漣波雙向諧振CLLC電路之實驗雛型,其輸出額定功率為1.5 kW,匯流排電壓390 V,電池端電壓150 V,並以數位訊號處理器TMS320F28335驗證本論文所提出之雙迴路控制法,降低市頻漣波,並達成自然切換,此轉換器操作於充電模式之最高效率為97.2%,操作於放電模式之最高效率為94.9%,滿載時低市頻漣波降低80%。
The traditional charging systems applied to batteries have double line frequency ripple, and produce large current ripple in the battery to decrease the battery’s life time. This thesis implements a bidirectional CLLC resonant converter with low line-frequency ripple by dual loop control, in which the outer loop is used to modulate output voltage by controlling the center switching frequency, and the inner loop is used to suppress the output voltage to control the switching frequency variation in half line cycle. Additionally, analyzing the dual loop control by the steady state analysis. Finally, the experimental prototype with rated 1.5 kW, DC high voltage 390 V and battery voltage 150 V is implemented by a DSP TMS320F28335 to verify the theoretical analysis. The results demonstrate that the double line frequency ripple is reduced over 80%, the maximum conversion efficiency is 97.2% in charging stage, and the maximum conversion efficiency is 94.9% in discharging stage.
[1] A. Z. Mech and S. Rouse, “Macro and Micro Economic Principles of the Kyoto Protocol Result - Making Money,” in Proc. IEEE Eic Ccc, 2006, pp. 1-2.
[2] Z. Luo, Z. Hu, Y. Song, Z. Xu, H. Liu, L. Jia, and H. Lu, “Economic Analyses of Plug-in Electric Vehicle Battery Providing Ancillary Services,” in Proc. IEEE IEVC, 2012, pp. 1-5.
[3] T. Niikuni and K. Koshika, “Investigation of CO2 Emissions in Usage Phase due to an Electric Vehicle — Study of Battery Degradation Impact on Emissions,” in Proc. IEEE EVS, 2013, pp. 1-7.
[4] F. A. Rusu, A. G. Baciu, and G. Livint, “Applicability of Fuel Cell in Electric Vehicles,” in Proc. IEEE EPE, 2018, pp. 529-533.
[5] E. Alghsoon, A. Harb, and M. Hamdan, “Power Quality and Stability Impacts of Vehicle to Grid (V2G) Connection,” in Proc. IEEE IREC, 2017, pp. 1-6.
[6] S. Kulkarni, A. R. Thorat, and I. Korachagaon, “Bidirectional Converter for Vehicle to Grid (V2G) Reactive Power Operation,” in Proc. IEEE ICCPCT, 2017, pp. 1-6.
[7] J. H. Park and K. B. Lee, “A Two-stage Bidirectional DC/DC Converter with SiC-MOSFET for Vehicle-to-Grid (V2G) Application,” in Proc. IEEE CENCON, 2017, pp. 288-293.
[8] R. Zgheib, I. Kamwa, and K. Al-Haddad, “Comparison between Isolated and Non-Isolated DC-DC Converters for Bidirectional EV chargers,” in Proc. IEEE ICIT, 2017, pp. 515-520.
[9] L. Jing, X. Wang, B. Li, M. Qiu, B. Liu, and M. Chen, “An Optimized Control Strategy to Improve the Current Zero-Crossing Distortion in Bidirectional AC/DC Converter Based on V2G Concept,” in Proc. IEEE IPEC, 2018, pp 878-882.
[10] A. K. Verma, B. Singh, and D. T. Shahani, “Grid to Vehicle and Vehicle to Grid Energy Transfer Using Single-Phase Bidirectional AC-DC Converter and Bidirectional DC-DC Converter,” in Proc. IEEE ICEAS, 2011, pp. 1-5.
[11] A. K. Singh, R. Prasanna, and K. Rajashekara, “Modelling and Control of Novel Bidirectional Single-Phase Single-Stage Isolated AC-DC Converter with PFC for Charging of Electric Vehicles,” in Proc. IEEE EIT, 2018, pp. 661-666.
[12] E. Y. Yang, M. M. Alam, J. Y. Lin, Y. C. Hsieh, H. J. Chiu, and S. W. Kuo, “Study and Implementation of an Isolated Bidirectional Resonant Converter with Natural Commutation,” in Proc. IEEE IFEEC, 2015, pp. 1-5.
[13] G. Yamada, T. Norisada, F. Kusama, K. Akamatsu, and M. Michihira, “Operation Analysis of High Efficiency Grid Connected Bi-Directional Power Conversion System for Various Storage Battery Systems with Bi-Directional Switch Circuit Topology,” in Proc. IEEE APEC, 2016, pp. 2607-2612.
[14] H. Li, F. Z. Peng and J. S. Lawler, “A natural ZVS Medium-Power Bidirectional DC-DC Converter with Minimum Number of Devices,” IEEE Trans. on Ind. Applications, vol. 39, no. 2, pp. 525-535, Mar. 2003.
[15] S. Park and Y. Song, “An Interleaved Half-Bridge Bidirectional DC-DC Converter for Energy Storage System Applications,” in Proc. IEEE ECCE, 2011, pp. 2029-2034.
[16] B. Zhao, Q. Yu, and W. Sun, “Extended-Phase-Shift Control of Isolated Bidirectional DC-DC Converter for Power Distribution in Microgrid,” IEEE Trans. Power Electronics., vol. 27, no. 11, pp. 4667-4680, Nov. 2012.
[17] J. P. Coimbra, R. C. Pontara, L. P. Loures, and P. S. Almeida, “An Isolated Bidirectional Soft-Switching Converter Based on LLC resonant Half-Bridge with Synchronous Rectification,” in Proc. IEEE COBEP, 2017, pp. 1-8.
[18] S. Zong, G. Fan and X. Yang, “Double Voltage Rectification Modulation for Bidirectional CLLLC Resonant Converter for Wide Voltage Range Operation,” in Proc. IEEE PEAC, 2018, pp. 1-6.
[19] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of Bidirectional DC-DC Resonant Converter for Vehicle-to-Grid (V2G) Applications,” IEEE Trans. Transp. Electrification, vol. 1, no. 3, pp. 232-244, Oct. 2015.
[20] C. Liu, J. Wang, K. Colombage, C. Gould, and B. Sen, “A CLLC resonant converter Based Bidirectional EV Charger with Maximum Efficiency Tracking,” in Proc. IET PEMD, 2016, pp. 1-6.
[21] W. Chen, S. Wang, X. Hong, Z. Lu, and S. Ye, “Fully Soft-Switched Bidirectional Resonant DC-DC Converter with A New CLLC Tank,” in Proc. IEEE APEC, 2010, pp. 1238-1242.
[22] Z. Zhang, Y. Q. Wu, D. J. Gu, and Q. Chen, “Current Ripple Mechanism with Quantization in Digital LLC Converters for Battery Charging Applications,” IEEE Trans. Power Electronics, vol. 33, no. 2, pp. 1303-1312, Feb. 2018.
[23] G. Fontes, C. Turpin, S. Astier, and T. A. Meynard, “Interactions Between Fuel Cells and Power Converters: Influence of Current Harmonics on a Fuel Cell Stack,” IEEE Trans. Power Electronics, vol. 22, no. 2, pp. 670-678, Mar. 2007.
[24] C. M. Lai, J. Teh, and Y. H. Cheng, “An Efficient Active Ripple Filter for Use in Single-Phase DC-AC Conversion System,” in Proc. IEEE ICAST, 2017, pp. 234-237.
[25] L. Gu, X. Ruan, M. Xu, and K. Yao, “Means of Eliminating Electrolytic Capacitor in AC/DC Power Supplies for LED Lightings,” IEEE Trans. Power Electronics, vol. 24, no. 5, pp. 1399-1408, May 2009.
[26] X. Ruan, B. Wang, K. Yao, and S. Wang, “Optimum Injected Current Harmonics to Minimize Peak-to-Average Ratio of LED Current for Electrolytic Capacitor-Less AC–DC Drivers,” IEEE Trans. Power Electronics, vol. 26, no. 7, pp. 1820-1825, Jul. 2011.
[27] M. Mellincovsky, V. Yuhimenko, M. M. Peretz, and A. Kuperman, “Low-Frequency DC-Link Ripple Elimination in Power Converters With Reduced Capacitance by Multiresonant Direct Voltage Regulation,” IEEE Trans. Ind. Electronics, vol. 64, no. 3, pp. 2015-2023, Mar. 2017.
[28] K. W. Lee, Y. H. Hsieh, and T. J. Liang, “A Current Ripple Cancellation Circuit For Electrolytic Capacitor-Less AC-DC LED Driver,” in Proc. IEEE APEC, 2013, pp. 1058-1061.
[29] Y. C. Shen, T. J. Liang, W. J. Tseng, H. H. Chang, K. H. Chen, Y. J. Lu, and J. S. Li, “Non-Electrolytic Capacitor LED Driver with Feedforward Control,” in Proc. IEEE ECCE, 2015, pp. 3223-3230.
[30] Y. M. Lin, “Study on Improving Line Frequency Ripple of Bidirectional DC-DC CLLC Resonant Converter,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, Jun. 2018.