簡易檢索 / 詳目顯示

研究生: 陳彥霖
Chen, Yen-Lin
論文名稱: JPEG2000 小波濾波器提升系統之架構
Efficient Lifting-Based Architecture for JPEG2000 Wavelet Filter
指導教授: 賴源泰
Lai, Yen-Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 62
中文關鍵詞: 提升機制影像壓縮離散小波轉換翻轉式架構
外文關鍵詞: flipping structure, JPEG2000, lifting scheme, discrete wavelet transform, VLSI architecture
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   離散小波轉換(DWT)被利用於影像處理的標準中,如JPEG2000。相較於傳統方式利用遞升結構來實現小波轉換可明顯地降低應體成本。為了影像壓縮並考慮到無失真的結果,在執行小波轉換濾波前必須要對影像作展延處理,但相對的小波轉換必須要額外去處理這些無用資訊。
      
      本論文中提出對JPEG2000已存在架構與翻轉式架構中,一種有效的方法去消除邊界處所需要的額外處理,其主要是藉由提升機制發現到其相關性,並在架構適當處遞補左移機制,同時將此架構推廣至二維並與現有架構比較。

      Discrete wavelet transform (DWT) is the basis for image standard, such as JPEG2000. Lifting-based DWT requires fewer multipliers and adders compared to the conventional-based approach. For image compression, best results are achieved by symmetrically extending the image at the boundaries before filtering. It is possible that the wavelet transform must use more cycles to handle the useless information.
     
      In this thesis, we propose an efficient method of modifying the existing architecture and flipping architecture to eliminate extra cycles required in the boundary problem for JPEG2000. At the same time, we consider that 2-D architecture extended by using this 1-D architecture compare with the existing 2-D DWT architecture.

    ABSTRACT CONTENTS LIST OF FIGURES LIST OF TABLES CHAPTER 1 INTRODUCTION.....................................................1  1.1 Motivation...........................................................1  1.2 The Fundamental Idea Behind Wavelet..................................4  1.3 Organization of This Thesis..........................................6 CHAPTER 2 Wavelet Transform................................................7  2.1 Wavelet Theory.......................................................7   2.1.1 Multiresolution Approximation of L2(R)...........................8   2.1.2 Scaling Function.................................................8  2.2 Wavelets and Filter Banks...........................................11   2.2.1 Orthogonal Wavelet Transform....................................12   2.2.2 Filter Bank.....................................................13   2.2.3 Bi-orthogonal Wavelet...........................................14 CHAPTER 3 Lifting Scheme and Precision Analysis...........................17  3.1 Factoring Wavelet Transforms for Lifting Scheme.....................17   3.1.1 Polyphase Representation........................................18   3.1.2 Euclidean Algorithm.............................................19  3.2 Analysis of Computational Complexity for Lifting Scheme.............23   3.2.1 Adder (Multiplexer-Based Fast Binary Adder).....................24   3.2.2 Multiplier (Multiplexer-Based Array Multiplier).................26 CHAPTER 4 Improved Architecture for Lifting Scheme........................31  4.1 The existing architecture for 1-D...................................32   4.1.1 Conventional lifting-based DWT architecture for 1-D.............32   4.1.2 A Rescheduling lifting-based DWT architecture for 1-D...........34  4.2 Improved existing architecture for 1-D..............................36   4.2.1 Boundary treatment and improved existing architecture...........37   4.2.2 Flipping structure for the conventional lifting-based architecture..........................................................41  4.3 The extension to Two-Dimensional architecture.......................48   4.3.1 Two-Dimensional DWT.............................................48   4.3.2 Analysis of memory requirement..................................50   4.3.3 Proposed 2-D architecture.......................................55   4.3.4 Comparison......................................................56 CHAPTER 5 Conclusions.....................................................58 REFERENCES................................................................59

    [1] Coding of Still pictures: JPEG 2000 Part I Final Committee Draft Version 1.0, ISO/IEC JTC 1/SC 29/WG1 (ITU-T SG8), Mar. 2000.

    [2] S. G. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell., vol. 11, pp. 674-693, July 1989.

    [3] D. S. Taubman, M. W. Marcellin, JPEG2000: Image Compression Fundamentals, Standards and Practice. Kluwer Academic Publishers, 2002.

    [4] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. New York:Wiley, 1999.

    [5] S. G. Mallat, A Wavelet Tour of Signal Processing. San Diego, CA: Academic, 1998.

    [6] K. K. Parhi and T. Nishitani, “VLSI architecture for discrete wavelet transforms,” IEEE Trans. VLSI Syst.,vol. 1, pp. 191-202, June 1993.

    [7] P.-C. Wu and L.-G. Chen, “An efficient architecture for two-dimensional discrete wavelet transform,” IEEE Trans. Circuits and Syst. Video Tech., vol. 11, no. 4, pp. 536-545, April 2001.

    [8] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” J. Fourier Analysis and Applications, vol. 4, no. 3, pp. 243-269, 2001.

    [9] K. Andra, C. Chakrabarti, and T. Acharya, “A VLSI architecture for lifting-based forward and inverse wavelet transform,” IEEE Trans. Signal Processing, vol. 50, no. 4, pp. 966-977, April 2002.

    [10] C. Yu and S.-J. Chen, “Design of an efficient VLSI architecture for 2D discrete wavelet transforms,” IEEE Trans. Consumer electronics, vol. 45, no. 1, February 1999.

    [11] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies, “Image coding using the wavelet transform,” IEEE Trans. Image Processing, pp. 205-220, Jan. 1992
    [12] G. Dillen, B. Georis, J.-D. Legat, and O. Cantineau, “Combined line-based architecture for the 5-3 and 9-7 wavelet transform of JPEG2000,” IEEE Trans. Circuits and Syst. Video Tech., vol. 13, no. 9, September 2003.

    [13] P.-Y. Chen, “VLSI implementation for one-dimensional multilevel lifting-based wavelet transform,” IEEE Trans. Computers, vol. 53, no. 4, April 2004.

    [14] S. Masud, J. V. McCanny, “Reusable Silicon IP cores for discrete wavelet transform applications,” IEEE Trans. Circuits and Systems-I: Regular Paper, vol. 51, no.6, June 2004.

    [15] C.-T. Huang, P.-C. Tseng, L.-G. Chen, “Flipping structure: an efficient VLSI architecture for lifting-based discrete wavelet transform,” IEEE Trans. Signal Processing, vol. 52, no. 4, April 2004.

    [16] B.-F. Wu, Y.-Q. Hu, “An efficient VLSI implementation of discrete wavelet transform using embedded instruction codes for symmetric filters,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 9, September 2003.

    [17] B. E. Usevitch, “A tutorial on modern lossy wavelet image compression: Founddations of JPEG 2000,” IEEE Signal Processing Mag. vol. 18, pp. 22-35, September 2001.

    [18] K. Pekmestzi, “Multiplexer-Based Array Multipliers,” IEEE Trans. on Computers, vol. 48, pp. 15–23, 1999.

    [19] S. Barua, J. E. Carletta, K. A. Kotteri, and A. E. Bell, “An efficient architecture for lifting-based two-dimensional discrete wavelet transfoms,” in Proc. ACM Great Lakes Symp. VLSI, pp. 61-66, April 2004.

    [20] J. M. Jou, Y.-H. Shiau, and C.-C. Liu, “Efficient VLSI architectures for the biorthogonal wavelet transform by filter bank and lifting scheme,” in Proc. IEEE Int. Symp. Circuits and Systems, vol. 2, pp. 529-532, 2001.

    [21] B.-F. Wu and C.-F Lin, “A rescheduling and fast pipeline VLSI architecture for lifting-based discrete wavelet transform,” in Proc. IEEE int. Symp. Circuits and Systems, vol. 2, May 2003.
    [22] C.-J. Lian, K.-F. Chen, H.-H. Chen, and L.-G. Chen, “Lifting based discrete wavelet transform architecture for JPEG2000,” in IEEE Int. Symp. Circuits and Systems, 2001.

    [23] W.-A. Chang, Y.-S. Lee, W.-S. Peng, and C.-Y. Lee, “A Line-Based, Memory Efficient and Programmable Architecture for 2D DWT,” in IEEE Int. Symp. Circuits and Systems, May 2001.

    [24] S. V. Silva and S. Bampi, “Area and throughput trade-offs in the design of pipelined discrete wavelet transform architectures,” in Proc. IEEE Design, Automation and Test in Europe, 2005.

    [25] H. H. Ali, A. S. AbdelGader, R. F. Abdou, “Reconfigurable architecture for lifting based discrete wavelet transform,” in IEEE Int. Conf. Electrical, Electronic and Computer Engineering, Sept. 2004.

    [26] M. Alam, W. Badawy, V. Dimitrov, and G. Jullien, “Efficient direct 2D architecture for lifted biorthogonal DWT,” in IEEE Workshop on Signal Processing Systems, Aug 2003.

    [27] V. Spiliotopoulos, N. D. Zervas, Y. Andreopoulos, G. Anagnostopoulos, and C. E. Goutis, “Quantization effect on VLSI implementations for the 9/7 DWT filters,” in Proc. ICASSP’01, 2001.

    [28] P. McCanny, S. Masud, and J. McCanny, “Design and implementation of the symmetrically extended 2-D wavelet transform,” in Proc. IEEE Acoustics, Speech, and Signal Processing, 2002.

    [29] P. McCanny, S. Masud, and J. McCanny, “An efficient architecture for the 2-D biorthogonal discrete wavelet transform,” in Proc. IEEE Image Processing, Oct. 2001.

    [30] S. Masud, J. V. McCanny, “Rapid design of biorthogonal wavelet transforms,” in Proc. IEE Circuits, Devices and Systems, vol. 147, pp. 293-296, Oct. 2000.

    [31] M. Nibouche, A. Bouridane, and O. Nibouche, “Rapid prototyping of biorthogonal discrete wavelet transforms on FPGAs,” in Proc. IEEE Int. Elec., Circuits and Systems, 2001.

    [32] M. Nibouche, A. Bouridane, F. Murtagh, and O. Nibouche, “FPGA-based discrete wavelet transforms system,” in Field-Programmable Logic and Applications, 2001.

    [33] I. S. Uzun, A. Amira, and A. Bouridane, “An efficient architecture for 1-D discrete biorthogonal wavelet transform,” in Proc. IEEE Int. Symp. Circuits and Systems, May 2004.

    [34] A. S. Motra, P. K. Bora, I. Chakrabarti, “An efficient hardware implementation of DWT and IDWT,” in TENCON 2003. Conf. on Convergent Technologies for Asia-Pacific Region, vol. 3, pp. 15-17, Oct. 2003.

    [35] A. M. Al-Haj, “Fast discrete wavelet transformation using FPGAs and distributed arithmetic,” in Int. Journal of Applied Science and Engineering, 2003.

    [36] G. C. Jung, D. Y. Jin, and S. M. Park, “An efficient line based VLSI architecture for 2-D lifting DWT,” in IEEE Int. Symp. Circuits and Systems, July 2004.

    下載圖示 校內:2006-07-29公開
    校外:2006-07-29公開
    QR CODE