簡易檢索 / 詳目顯示

研究生: 陳宏道
Chen, Hung-Tao
論文名稱: 電紡絲法製備銀奈米纖維網狀結構透明導電薄膜與特性研究
Fabrication and Characterization of Electrospun Silver Nanofiber Networks as Transparent Conductive Films
指導教授: 陳引幹
Chen, In-Gann
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 105
語文別: 中文
論文頁數: 114
中文關鍵詞: 電紡絲透明導電薄膜聚甲基丙烯酸甲酯三氟醋酸銀
外文關鍵詞: electrospinning, transparent conductive films, PMMA, silver trifluoroacetate
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電紡絲法噴覆銀前驅物/高分子複合電紡絲,再搭配後處理製程來製備銀網狀結構透明導電薄膜,銀前驅物為三氟醋酸銀(silver trifluoroacetate, STA),高分子為聚甲基丙烯酸甲酯(poly(methyl methacrylate), PMMA),而後處理有三種,分別為熱處理法(thermal treatment)、紫外光處理法(UV treatment)與無電鍍(electroless plating)銀法。
    以熱處理法製備透明導電薄膜,加熱有兩階段,第一階段為100oC,促使纖維中銀奈米顆粒的熱還原,第二階段為500oC,引發了PMMA高分子的熱裂解與銀奈米顆粒的燒結。以熱處理製作之透明導電薄膜,穿透度與高分子濃度以及銀前驅物摻雜量有關,高分子濃度、銀前驅物摻雜量越低,穿透度越高;而片電阻與熱裂解氣氛以及銀前驅物摻雜量有關,在保護氣氛下、高銀前驅物摻雜時,可得較低的片電阻。當PMMA為15 wt%、Ag/PMMA重量比為0.7、氮氣氣氛下熱處理時,可得片電阻為1000 Ω/sq、穿透度63%的銀網狀結構透明導電薄膜。
    以紫外光處理法製備透明導電薄膜,紫外光之照射不僅可光裂解PMMA,也可同時光還原纖維中的銀奈米顆粒並使其堆疊成一維導電路徑。以紫外光處理法製作之透明導電薄膜,片電阻與紫外光照射時間以及銀前驅物摻雜量有關,照射時間越短、摻雜量越低,穿透度越高;而片電阻亦與紫外光照射時間以及銀前驅物摻雜量有關,照射時間越長、摻雜量越高,片電阻越低。當PMMA濃度為15 wt%、Ag/PMMA重量比為0.5、照射時間為120分鐘時,可得片電阻500 Ω/sq、穿透度83.0%的銀網狀結構透明導電薄膜。此外本研究調查銀還原與PMMA裂解的機制,顯示銀奈米顆粒在極短的時間內還原於纖維中,並隨照射時間增加有集中於纖維中心的趨勢,亦發現短時間的紫外光照射即可使PMMA有效率的光裂解。
    以無電鍍法製備透明導電薄膜,概念為在PMMA纖維表面無電鍍沉積銀薄膜,藉由可溶性基板的使用,改善無電鍍銀非選擇性沉積特性的影響,使銀顆粒僅生成於PMMA電紡絲表面,並藉由奈米銀晶種嵌於PMMA纖維表面的輔助,增進無電鍍銀沉積均勻性。最終可製備片電阻260 Ω/sq、穿透度為80.0%的的銀網狀結構透明導電薄膜。此薄膜承受一萬週期之反覆撓曲後,其片電阻值變化率僅60.5%,而經150℃、150小時與90℃、250小時的溫度測試,其前後片電阻值比例皆小於1.3。

    Silver networks with high transmittance and low sheet resistance were prepared via a polymer-assisted electrospinning technique and several post treatments, including thermal, ultraviolet, and electroless plating processes. Nonaqueous media containing poly(methyl methacrylate) (PMMA) and silver trifluoroacetate (STA) were formulated as polymer/metal electrospinning precursor. Nanofibers randomly deposited on substrates formed a plane scaffold, which served as the raw material for silver networks. Post treatments not only reduced the STA precursors to silver nanoparticles (Ag NPs), but also triggered connection of the Ag NPs into a one-dimensional (1D) domain. Silver fibers formed continuous conducting networks on the substrate surface. The sheet resistances and optical transmittance of these silver networks revealed strong correlations with the original STA/PMMA ratios and with the silver network morphologies. The material fabrication was carefully investigated, and the fiber morphologies, electrical and optical properties as well as bending reliability of the products were examined.

    摘要 I Extended abstract III 目錄 VII 表目錄 X 圖目錄 XII 第一章 緒論 1 1-1前言 1 1-2研究動機 2 第二章 理論基礎與文獻回顧 4 2-1透明導電薄膜簡介 4 2-1-1透明導電薄膜發展現況 4 2-1-2連續平面型透明導電薄膜 5 2-1-3網狀結構型透明導電薄膜 7 2-2靜電紡絲技術 8 2-2-1硬體建置與原理 8 2-2-2金屬/高分子電紡絲複合纖維… 10 2-3靜電紡絲法製備透明導電薄膜 11 2-3-1網狀結構作為透明導電材料本體 11 2-3-2網狀結構作為模板 13 2-3-3網狀結構作為遮罩 14 第三章 實驗方法與儀器設備 25 3-1藥品名稱 25 3-2材料製備與分析 25 3-2-1 PMMA/STA複合電紡纖維噴覆 25 3-2-2熱處理法合成銀網狀結構 26 3-2-3紫外光處理法合成銀網狀結構 27 3-2-4無電鍍法合成銀網狀結構 27 3-3製程設備與分析儀器 28 第四章 結果與討論 40 4-1 PMMA/STA複合電紡纖維噴覆 40 4-1-1高分子PMMA濃度對纖維形貌之影響 40 4-1-2銀前驅物STA摻雜量對纖維形貌之影響 41 4-1-3噴絲時間與穿透度之關係 42 4-1-4結論 43 4-2熱處理法製備銀網狀結構透明導電薄膜 54 4-2-1熱還原時間與銀奈米結構之表面電漿共振效應 54 4-2-2熱處理氣氛對銀網狀結構之形貌、光電特性之影響 55 4-2-3高分子PMMA濃度對銀網狀結構形貌與光電特性之影響 56 4-2-4銀前驅物STA摻雜量對銀網狀結構形貌與光電特性之影響 57 4-2-5結論 57 4-3紫外光處理法製備銀網狀結構透明導電薄膜 67 4-3-1紫外光照射劑量對銀奈米結構形貌之影響 67 4-3-2紫外光照射劑量對PMMA光分解行為探討 68 4-3-3紫外光照射劑量對銀奈米結構還原行為探討 70 4-3-4紫外光照射劑量對銀網狀結構光電特性之影響 71 4-3-5銀前驅物STA摻雜量對銀網狀結構光電特性之影響 71 4-3-6結論 72 4-4無電鍍法製備銀網狀結構透明導電薄膜 82 4-4-1無電鍍反應時間對銀網狀結構形貌與光電效能之影響 82 4-4-2晶種輔助沉積對銀網狀結構形貌光電效能之影響 84 4-4-3銀網狀結構撓曲可靠度測試 85 4-4-4銀網狀結構高溫儲存測試 86 4-4-5結論 87 第五章 總結論 98 參考文獻 102 附錄 112

    [1] S. Bae, S. J. Kim, D. Shin, J. H. Ahn and B. H. Hong, Towards industrial applications of graphene electrodes, Phys. Scr., 2012, T146, 014024.
    [2] Transparent Conductive Films (TCF) 2015-2025, www.IDTechEx.com/tcf.
    [3] https://zh.wikipedia.org/wiki/%E9%9D%9C%E9%9B%BB%E7%B4%A1%E7%B5%B2
    [4] H. Wu, L. Hu, M. Rowell, D. Kong, J. Cha, J. McDonough, J. Zhu, Y. Yang, M. McGehee and Y. Cui, Electrospun metal nanofiber webs as high-performance transparent electrode, Nano Lett., 2010, 10, 4242-4248.
    [5] J. Kim, J. Kang, U. Jeong, H. Kim and H. Lee, Catalytic, conductive, and transparent platinum nanofiber webs for FTO-free dye-sensitized solar cells, ACS Appl. Mater. Interfaces, 2013, 5, 3176-3181.
    [6] H. Wu, D. Kong, Z. Ruan, P. C. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan and Y. Cui, A transparent electrode based on a metal nanotrough network, Nat. Nanotechnol., 2013, 8, 421-425.
    [7] P. C. Hsu, D. Kong, S. Wang, H. Wang, A. Welch, H. Wu and Y. Cui, Electrolessly deposited electrospun metal nanowire transparent electrodes, J. Am. Chem. Soc., 2014, 136, 10593-10596.
    [8] T. He, A. Xie, D. Reneker and Y. Zhu, A tough and high-performance transparent electrode from a scalable and transfer-free method, ACS Nano, 2014, 8, 4782-4789.
    [9] K. Hong, J. Ham, B. J. Kim, J. Y. Park, D. C. Lim, J. Y. Lee and J. L. Lee, Continuous 1D-metallic microfibers web for flexible organic solar cells, ACS Appl. Mater. Interfaces, 2015, 7, 27397-27404.
    [10] C. Bao, J. Yang, H. Gao, F. Li, Y. Yao, B. Yang, G. Fu, X. Zhou, T. Yu, Y. Qin, J. Liu and Z. Zou, In situ fabrication of highly conductive metal nanowire networks with high transmittance from deep-ultraviolet to near-infrared, ACS Nano, 2015, 9, 2502-2509.
    [11] 林秀玲,電紡絲法製備銀/聚甲基丙烯酸甲酯複合網狀結構於透明電極之應用,國立成功大學材料科學及工程學系碩士論文,民國一百零一年。
    [12] 謝佩穎,以無電鍍法披覆銀於聚甲基丙烯酸甲酯電紡絲網狀結構作為透明電極之研究,國立成功大學材料科學及工程學系碩士論文,民國一百零二年。
    [13] T. Minami, Transparent conducting oxide semiconductors for transparent electrodes, Semicond. Sci. Technol., 2005, 20, S35-S44.
    [14] Y. Y. Cho and C. S. Kuo, Optical and electrical characterization of electrospun Al-doped zinc oxide nanofibers as transparent electrodes, J. Mater. Chem. C, 2016, 4, 7649-7657.
    [15] T. Minami, S. Ida and T. Miyata, High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation, Thin Solid Films, 2002, 416, 92-96.
    [16] Y. J. Xia and J. Y. Ouyang, PEDOT:PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells, J. Mater. Chem., 2011, 21, 4927-4936.
    [17] 廖鎔榆,軟性電子中替代ITO之透明導電材料,工業材料雜誌,2008,256,118-123.
    [18] D. S. Hecht, L. B. Hu and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 2011, 23, 1482-1513.
    [19] A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 2007, 6, 183-191.
    [20] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306, 666-669.
    [21] C. Lee, X. Wei, J. W. Kysar and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 2008, 321, 385-388.
    [22] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett., 2008, 8, 902-907.
    [23] J. H. Chen, C. Jang, S. Xiao, M. Ishigami and M. S. Fuhre, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol., 2008, 3, 206-209.
    [24] X. H. Lin and J. G. Gai, Synthesis and applications of large-area single-single layer graphene, RSC Adv., 2016, 6, 17818-17844.
    [25] X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo and R. S. Ruoff, Transfer of large-area graphene films for high-performance transparent Conductive Electrodes, Nano Lett., 2009, 9, 4359-4363.
    [26] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., 2010, 5, 574-578.
    [27] H. Wu, L. Hu, T. Carney, Z. Ruan, D. Kong, Z. Yu, Y. Yao, J. J. Cha, J. Zhu, S. Fan and Y. Cui, Low reflectivity and high flexibility of tin-doped indium oxide nanofiber transparent electrodes, J. Am. Chem. Soc., 2011, 133, 27-29.
    [28] P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee and S. H. Ko, Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network, Adv. Mater., 2012, 24, 3326-3332.
    [29] T. Akter and W. S. Kim, Reversibly stretchable transparent conductive coatings of spray- deposited silver nanowires, ACS Appl. Mater. Interfaces, 2012, 4, 1855-1859.
    [30] M. Liu, Y. Du, Y. E. Miao, Q. Ding, S. He, W. W. Tjiu, J. Pan and T. Liu, Anisotropic conductive films based on highly aligned polyimide fibers containing hybrid materials of graphene nanoribbons and carbon nanotubes, Nanoscale, 2015, 7, 1037-1046.
    [31] M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay and S. Magdassi, Transparent conductive coatings by printing coffee ring arrays obtained at room temperature, ACS Nano, 2009, 3, 3537-3542.
    [32] A. Mahajan, L. Francis and C. D. Frisbie, Facile method for fabricating flexible substrates with embedded, printed silver lines, ACS Appl. Mater. Interfaces, 2014, 6, 1306-1312.
    [33] T. M. Lee, J. H. Noh, S. W. Kwak, B. Kim, J. Jo and I. Kim, Design and fabrication of printed transparent electrode with silver mesh, Microelectron. Eng., 2012, 98, 556-560.
    [34] J. Woerle and H. Rost, Roll-to-roll production of transparent conductive films using metallic grids, MRS Bull., 2011, 36, 789-793.
    [35] H. Zhu, S. Parvinian, C. Preston, O. Vaaland, Z. Ruan and L. Hu, Transparent nanopaper with tailored optical properties, Nanoscale, 2013, 5, 3787-3792.
    [36] C. Preston, Y. Xu, X. Han, J. Munday and L. Hu, Optical haze of transparent and conductive silver nanowire films, Nano Res., 2013, 6, 461-468.
    [37] T. Hauger, S. Ibrahim Al-Rafia and J. Buriak, Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity, ACS Appl. Mater. Interfaces, 2013, 5, 12663-12671.
    [38] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans and Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 2010, 4, 2955-2963.
    [39] A. Formhals, Process and apparatus for preparing artificial threads, US Patent, 1934, 1975504.
    [40] G. Taylor, Disintegration of water drops in an electric field, Proceedings of the Royal Society A, 1964, 280, 383-397.
    [41] D. H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 1996, 7, 216-223.
    [42] J. M. Deitzel, J. Kleinmeyer, D. Harris and N. C. B. Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 2001, 43, 261-272.
    [43] C. J. Buchko, L. C. Chen, Y. Shen and D. C. Martin, Processing and microstructural characterization of porous biocompatible protein polymer thin films, Polymer, 1999, 40, 7397-7407.
    [44] D. Li and Y. N. Xia, Fabrication of titania nanofibers by electrospinning, Nano Lett., 2003, 3, 555-560.
    [45] C. L. Zhang and S. H. Yu, Nanoparticles meet electrospinning recent advances and future prospects, Chem. Soc. Rev., 2014, 43, 4423-4448.
    [46] J. M. Kim, H. I. Joh, S. M. Jo, D. J. Ahn, H. Y. Ha, S. A. Hong and S. K. Kim, Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation, Electrochim. Acta, 2010, 55, 4827-4835.
    [47] N. A. M. barakat, B. Kim, and H. Y. Kim, Production of Smooth and Pure Nickel Metal Nanofibers by the Electrospinning Technique Nanofibers Possess Splendid Magnetic Properties, J. Phys. Chem. C, 2009, 113, 531-536.
    [48] H. Li, W. Pan, W. Zhang, S. Huang and H. Wu, TiN nanofibers: a new material with high conductivity and transmittance for transparent conductive electrodes, Adv. Funct. Mater., 2013, 23, 209-214.
    [49] P. Chen, H. Li, S. Hu, T. Zhou, Y. Yan and W. Pan, Copper-coated TiN nanofibers with high electrical conductivity: a new advance in conductive one-dimensional nanostructures, J. Mater. Chem. C, 2015, 3, 7272-7276.
    [50] P. C. Hsu, H. Wu, T. J. Carney, M. T. McDowell, Y. Yang, E. C. Garnett, M. Li, L. Hu, and Yi Cui, Passivation coating on electrospun copper nanofibers for stable transparent electrodes, ACS Nano, 2012, 6, 5150-5156.
    [51] A. Trachtenberg, T. P. Vinod and R. Jelinek, Directed self-assembly of graphene oxide on an electrospun polymer fiber template, Carbon, 2015, 95, 888-894.
    [52] T. A. Kim, S. S. Lee, H. Kim and Min Park., Acid-treated SWCNT/polyurethane nanoweb as a stretchable and transparent conductor, RSC Adv., 2012, 2, 10717-10724.
    [53] Z. Chen, B Cotterell, W. Wang, E. Guenther and S. J. Chua, A mechanical assessment of flexible optoelectronic devices, Thin Solid Films, 2001, 394, 202-206.
    [54] IEC 62951-1 Ed. 1.0 Semiconductor devices - Flexible and stretchable semiconductor devices - Part 1: Bending test method for conductive thin films on flexible substrates, International Electrotechnical Commision.
    [55] J. Y. Chen, H. C. Chen, J. N. Lin and C. S. Kuo, Effects of polymer media on electrospun mesoporous titania nanofibers, Mater. Chem. Phys., 2008, 107, 480-487.
    [56] X. Z. Lin, X. Teng and H. Yang, Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor, Langmuir, 2003, 19, 10081-10085.
    [57] 林俊男,利用紫外線與熱誘導法製備包裹奈米金屬粒子的高分子電紡絲,國立成功大學材料科學及工程學系碩士論文,民國九十五年。
    [58] N. Singh and P. K. Khanna, In situ synthesis of silver nano-particles in polymethylmethacrylate, Mater. Chem. Phys., 2007, 104, 367-372.
    [59] D. He, B. Hu, Q. F. Yao, K Wang and S. H. Yu, Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles, ACS Nano, 2009, 3, 3993-4002.
    [60] Y. Yang, J. Shi, T. Tanaka and M. Nogami, Self-assembled silver nanochains for surface-enhanced Raman scattering, Langmuir, 2007, 23, 12042-12047.
    [61] J. J. Mock, D. R. Smith and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Lett., 2003, 3, 485-491.
    [62] T. Hirata, T. Kashiwagi and J. E. Brown, Thermal and oxidative degradation of poly(methy1methacrylate): weight loss, Macromolecules, 1985, 18, 1410-1418.
    [63] R. E. Southward, C. M. Boggs, D. W. Thompson and A. K. St. Clair, Synthesis of surface-metallized polyimide films via in situ reduction of (perfluoroalkanoato)silver(I) complexes in a poly(amic acid) precursor, Chem. Mater., 1998, 10, 1408-1421.
    [64] J. D. Peterson, S. Vyazovkin and C. A. Wight, Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate), J. Phys. Chem. B, 1999, 103, 8087-8092.
    [65] H. T. Tung, I. G. Chen, J. M. Song, C. W. Yen, Thermally assisted photoreduction of vertical silver nanowires, J. Mater. Chem., 2009, 19, 2386-2391.
    [66] C. C. Chang, C. M. Huang, Y. H. Chang and C. S. Kuo, Enhancement of light scattering and photoluminescence in electrospun polymer nanofibers, Opt. Express, 2010, 18, A174.
    [67] S. Rajendran, M. Sivakumar and R. Subadevi, Investigations on the effect of various plasticizers in PVA–PMMA solid polymer blend electrolytes, Mater. Lett., 2004, 58, 641-649.
    [68] S. Ramesh, K. H. Leen, K. Kumutha and A. K. Arof, FTIR studies of PVC/PMMA blend based polymer electrolytes, Spectrochimica Acta A, 2007, 66, 1237-1242.
    [69] S. E. Paramonov, N. P. Kuzmina and S. I. Troyanov, Synthesis and crystal structure of silver(I) carboxylate complexes, Ag(PnBu3)[C(CH3)3COO] and Ag(Phen)2[CF3COO]·H2O, Polyhedron., 2003, 22, 837-841.
    [70] H. Kaczmarek and H. Chaberska, AFM and XPS study of UV-irradiated poly(methyl methacrylate) films on glass and aluminum support, Appl. Surf. Sci., 2009, 255, 6729-6735.
    [71] S. B. Amor, G. Baud, M. Jacquet, G. Nanse, P. Fioux and M. Nardin, XPS characterisation of plasma-treated and alumina-coated PMMA, Appl. Surf. Sci., 2000, 153, 172-183.
    [72] A. P. Ameen, R. J. Ward, R. D. Short, G. Beamson and D. A. Briggs, A high-resolution X-ray photoelectron spectroscopy study of trifluoroacetic anhydride labelling of hydroxyl groups: demonstration of the  shift due to -OC(O)CF3, Polymer, 1993, 34, 1795-1799.
    [73] A. Hollander, F. Pippig, M. Dubreuil and D. Vangeneugden, Distinguishing surface OH and NHx using TFAA derivatization and XPS, Plasma Process Polym., 2008, 5, 345-349.
    [74] J. S. Hammond, S. W. Gaarenstroom and N. Winograd, X-ray photoelectron studies of cadmium- and silver-oxigen surfaces, Anal. Chem., 1975, 47, 2194-2199.
    [75] L. H. Tjeng, M. B. J. Meinders, J. van Elp, J. Ghijsen and G. A. Sawatzky, Electronic structure of Ag2O, Phys. Rev. B, 1990, 41, 3190-3199.
    [76] A. L. Patterson, The Scherrer formula for x-ray particle size determination, Phys. Rev., 1939, 56, 978-982.
    [77] Y. Sun, B. Gates, B. Mayers and Y. Xia, Crystalline silver nanowires by soft solution processing, Nano Lett., 2002, 2, 165-168.

    無法下載圖示 校內:2026-01-01公開
    校外:2026-01-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE