簡易檢索 / 詳目顯示

研究生: 彭伯倫
Peng, Po-Lun
論文名稱: 以HFSS模擬檢驗電磁能隙結構防制印刷電路板的電磁干擾之分析方法與效果
Assessment of Analysis Methods and Effectiveness of Electromagnetic Bandgap (EBG) Structures in EMI Mitigation on Printed Circuit Boards (PCBs) using HFSS Simulation
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 77
中文關鍵詞: 電磁干擾電磁能隙結構
外文關鍵詞: Electromagnetic Interference, Electromagnetic Bandgap Structures
相關次數: 點閱:91下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著5G時代來臨,數位電路的頻率逐漸增加,例如CPU時脈的主要頻率多為2.4GHz或以上,訊號切換在PCB內部金屬層之間形成的同步切換雜訊不容忽視。以週期性的內嵌式電磁能隙結構抑制雜訊,探討過往文獻中,假設干擾為平面波所推導出的電磁能隙結構模型、公式,進行公式計算與HFSS模擬驗證。在公式計算中,以MATLAB計算文獻中電磁能隙結構的傳輸線模型,以此得到電磁能隙結構的截止帶頻率範圍。模擬驗證時,建立HFSS模擬流程,以HFSS eigenmode模擬無窮週期時,電磁能隙結構的頻散圖(dispersion diagram),以此得到截止帶頻率,再以HFSS driven modal 模擬有限週期,wave port 1饋入的平面波經過M×N個unit cell組成的電磁能隙結構之後傳遞到wave port 2上,藉由S_21參數得知截止帶頻率,最後,同樣模擬有限週期,以incident cylindrical wave作為雜訊源,離雜訊源一段距離為觀測點,觀測點的電場振幅E_O除以雜訊源的電場振幅E_N取dB值,即20log⁡(E_O/E_N )為衡量截止帶頻率的標準,藉由柱面波模擬結果與假設平面波的公式計算、模擬結果做比較,評估平面波假設的正當性與有效性。由柱面波模擬,得知雜訊的大小會隨著與雜訊源的距離而變化,電磁能隙結構的擺放數目也並非越多越好,必須藉由模擬得知,在離雜訊源某一距離之下,最佳的unit cell數目,這是過往文獻中假設干擾波為平面波時,未能得到的結論。

    To suppress the simultaneous switching noise, periodic electromagnetic bandgap (EBG) structures have been studied in previous literature. The electromagnetic bandgap structure formula is derived from the assumptions of one-direction planar waves and infinite periodicity. One can use HFSS eigenmode to consider two-direction propagation to obtain the dispersion diagram for infinite periodicity. In this study, we use HFSS to simulate a metal parallel plate with 80mm length, 108mm width, and 1mm height. The dielectric is FR4 embedded electromagnetic bandgap structures composed of M×N unit cells. For planar wave simulation, the stopband frequency is obtained from the S_21 parameter. When embedded 12×2 unit cells, the 20dB stopband frequency is similar to the result of infinite periodicity. The farther the distance of propagation, the more significant the wave attenuation. For cylindrical wave simulation, an incident cylindrical wave is used as the noise source, and two observation points are selected. One is close to the source, and the other is far from the source. When the distance from the source becomes farther, the attenuation intensity of the electric field is not necessarily greater. The optimal number of unit cells is determined by noise frequency and the distance from noise. The result is different from that of planar assumption due to it’s not appropriate in reality. The optimal number of unit cells should be designed through software simulation.

    摘要 I 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1 研究背景與問題 1 1-2 研究動機、方法與目標 2 第二章 PCB內EMI的防制 4 2-1 電磁干擾(EMI) 4 2-2 PCB結構 5 2-2-1 PCB構裝結構 5 2-2-2 平行板波導 6 2-2-3 徑向(radial)平行板波導 16 2-3 PCB的EMI 22 2-3-1 同步切換雜訊(Simultaneous Switching Noise) 22 2-4 EMI防制 - SSN的抑制方法 23 2-4-1 抑制SSN的方法與比較 23 2-4-2 內嵌式EBG的截止帶公式理論與驗證 26 2-4-3 內嵌式EBG 的頻散圖 32 第三章 研究方法與步驟 36 3-1 研究問題 36 3-2 研究方法 37 3-3 研究步驟 41 3-3-1 公式計算 41 3-3-2 EBG unit cell模擬(週期性邊界) 44 3-3-3 EBG array模擬 44 第四章 EBG計算與模擬結果 46 4-1 EBG參數計算與模擬 46 4-1-1 公式計算 46 4-1-2 頻散圖 54 4-1-3 平面波模擬 56 4-1-4 柱面波模擬 61 第五章 結論與討論 73 參考文獻 75

    [1] S. Geetha, K. Satheesh Kumar, C. R. Rao, M. Vijayan, and D. Trivedi, "EMI shielding: Methods and materials—A review," Journal of applied polymer science, vol. 112, no. 4, pp. 2073-2086, 2009.
    [2] S. Shahparnia and O. M. Ramahi, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Transactions on Electromagnetic Compatibility, vol. 46, no. 4, pp. 580-587, 2004.
    [3] A. Mauricio et al., "Bearing diagnostics under strong electromagnetic interference based on Integrated Spectral Coherence," Mechanical Systems and Signal Processing, vol. 140, p. 106673, 2020.
    [4] M. Kaur, S. Kakar, and D. Mandal, "Electromagnetic interference," in 2011 3rd International Conference on Electronics Computer Technology, 2011, vol. 4: IEEE, pp. 1-5.
    [5] M. I. Montrose, Printed Circuit Board Design Techniques for EMC Compliance: A Handbook for Designers, Second ed. New York: Wiley-IEEE Press, 2000.
    [6] T. Hubing, "Effective strategies for choosing and locating printed circuit board decoupling capacitors," in 2005 International Symposium on Electromagnetic Compatibility, 2005. EMC 2005., 2005, vol. 2: IEEE, pp. 632-637.
    [7] J. Choi, S. Chun, N. Na, M. Swaminathan, and L. Smith, "A methodology for the placement and optimization of decoupling capacitors for gigahertz systems [CMOS VLSI]," in VLSI Design 2000. Wireless and Digital Imaging in the Millennium. Proceedings of 13th International Conference on VLSI Design, 2000: IEEE, pp. 156-161.
    [8] J. M. Hobbs et al., "Simultaneous switching noise suppression for high speed systems using embedded decoupling," in 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No. 01CH37220), 2001: IEEE, pp. 339-343.
    [9] A. Madou and L. Martens, "Electrical behavior of decoupling capacitors embedded in multilayered PCBs," IEEE Transactions on Electromagnetic Compatibility, vol. 43, no. 4, pp. 549-556, 2001.
    [10] C.-T. Wu and R.-B. Wu, "Two-dimensional finite-difference time-domain method combined with open boundary for signal integrity issues between isolation islands," in 2002 IEEE 11th Topical Meeting on Electrical Performance of Electronic Packaging, 2002: IEEE, pp. 283-286.
    [11] Y. Jeong, H. Kim, J. Kim, J. Park, and J. Kim, "Analysis of noise isolation methods on split power/ground plane of multi-layered package and PCB for low jitter mixed mode system," in Electrical Performance of Electrical Packaging (IEEE Cat. No. 03TH8710), 2003: IEEE, pp. 199-202.
    [12] D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and techniques, vol. 47, no. 11, pp. 2059-2074, 1999.
    [13] C.-L. Wang, G.-H. Shiue, W.-D. Guo, and R.-B. Wu, "A systematic design to suppress wideband ground bounce noise in high-speed circuits by electromagnetic-bandgap-enhanced split powers," IEEE transactions on microwave theory and techniques, vol. 54, no. 12, pp. 4209-4217, 2006.
    [14] C. R. Paul, R. C. Scully, and M. A. Steffka, Introduction to electromagnetic compatibility, Second ed. Hoboken, New Jersey: John Wiley & Sons, 2006.
    [15] H. W. Ott, Electromagnetic Compatibility Engineering. Hoboken, New Jersey: John Wiley & Sons, 2009.
    [16] H. Chen, W. Zhang, and R. Cheng, "Electromagnetic interference reduction from printed circuit boards," in 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), 2019: IEEE, pp. 1045-1048.
    [17] R. S. Khandpur, Printed Circuit Boards: Design, Fabrication, Assembly and Testing. United States of America: McGraw-Hill, 2006.
    [18] D. M. Pozar, Microwave engineering, Fourth ed. United States of America: John wiley & sons, 2012.
    [19] G. Y. Cho, H. D. Cho, and W. S. Park, "Investigation of higher-order modes in finite-width parallel-plate waveguide," Journal of Electromagnetic Waves and Applications, vol. 27, no. 12, pp. 1509-1520, 2013.
    [20] C. A. Balanis, Antenna theory: analysis and design, Third ed. Hoboken, New Jersey: John wiley & sons, 2005.
    [21] P. Russer, Electromagnetics, microwave circuit and antenna design for communications engineering. United States of America: Artech House, 2006.
    [22] S. Chun, Methodologies for modeling simultaneous switching noise in multi-layered packages and boards. Atlanta, Georgia: Georgia Institute of Technology, 2002.
    [23] T. Kamgaing and O. M. Ramahi, "Design and modeling of high-impedance electromagnetic surfaces for switching noise suppression in power planes," IEEE Transactions on electromagnetic compatibility, vol. 47, no. 3, pp. 479-489, 2005.
    [24] T. Kamgaing and O. M. Ramahi, "A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface," IEEE Microwave and wireless components letters, vol. 13, no. 1, pp. 21-23, 2003.
    [25] S. D. Rogers, "Electromagnetic-bandgap layers for broad-band suppression of TEM modes in power planes," IEEE transactions on microwave theory and techniques, vol. 53, no. 8, pp. 2495-2505, 2005.
    [26] T.-L. Wu, Y.-H. Lin, and S.-T. Chen, "A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures," IEEE microwave and wireless components letters, vol. 14, no. 7, pp. 337-339, 2004.
    [27] J. Qin, O. M. Ramahi, and V. Granatstein, "Novel planar electromagnetic bandgap structures for mitigation of switching noise and EMI reduction in high-speed circuits," IEEE Transactions on Electromagnetic Compatibility, vol. 49, no. 3, pp. 661-669, 2007.
    [28] H.-R. Zhu, J.-F. Mao, and J.-J. Li, "Signal and power integrity analysis for the novel power plane of EBG structure in high-speed mixed signal systems," in 2013 IEEE International Wireless Symposium (IWS), 2013: IEEE, pp. 1-4.
    [29] S. Shahparnia and O. M. Ramahi, "Design, implementation, and testing of miniaturized electromagnetic bandgap structures for broadband switching noise mitigation in high-speed PCBs," IEEE transactions on advanced packaging, vol. 30, no. 2, pp. 171-179, 2007.
    [30] J. D. Patterson and B. C. Bailey, Solid-state physics: introduction to the theory. Heidelberg: Springer Science & Business Media, 2010.
    [31] P. K. Misra, Physics of condensed matter. Academic Press, 2011.
    [32] L. Brillouin, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. McGraw-Hill Book Company, Incorporated, 1946.
    [33] F. Maurin, C. Claeys, E. Deckers, and W. Desmet, "Probability that a band-gap extremum is located on the irreducible Brillouin-zone contour for the 17 different plane crystallographic lattices," International Journal of Solids and Structures, vol. 135, pp. 26-36, 2018.
    [34] R. Ramíarez and M. C. Böhm, "Simple geometric generation of special points in brillouin‐zone integrations. Two‐dimensional bravais lattices," International journal of quantum chemistry, vol. 30, no. 3, pp. 391-411, 1986.
    [35] A. Tavallaee and R. Abhari, "2-D characterisation of electromagnetic bandgap structures employed in power distribution networks," IET microwaves, antennas & propagation, vol. 1, no. 1, pp. 204-211, 2007.
    [36] A. S. Phani, J. Woodhouse, and N. Fleck, "Wave propagation in two-dimensional periodic lattices," The Journal of the Acoustical Society of America, vol. 119, no. 4, pp. 1995-2005, 2006.
    [37] R. Craster, T. Antonakakis, M. Makwana, and S. Guenneau, "Dangers of using the edges of the Brillouin zone," Physical Review B, vol. 86, no. 11, p. 115130, 2012.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE