簡易檢索 / 詳目顯示

研究生: 黃祥斌
Huang, Hsiang-Pin
論文名稱: 極低頻電磁場對癌細胞微管影響之電性建模與分析
Electrical Modeling and Analysis of Microtubules in Cancer affected by Extreme-Low Frequency Electromagnetic Field
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 37
中文關鍵詞: 極低頻電磁場MDA-MB-231立體微電極陣列COMSOL單細胞阻抗單細胞等效電路微管
外文關鍵詞: extremely low frequency electromagnetic fields (ELF-EMF), MDA-MB-231, three-dimensional cell capture and sensing array electrode (3D ECCSA), COMSOL, microtubules (MTs), single cell equivalent circuit model, single cell impedance
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,許多研究指出極低頻電磁場(ELF_EMF)對細胞的生理現象有影響,例如代謝、移動、增殖以及凋亡。本篇論文應用3D立體電極捕捉細胞並利用電極陣列結合極低頻電磁場裝置,對癌細胞MDA-MB-231在ELF_EMF做及時、非侵入性的監控。在3D電極陣列裡,細胞阻抗量測長達12h,在這段時間,從阻抗量測可以發現,細胞經歷了三個階段,細胞蔓延、有絲分裂細胞變圓、細胞分裂。此外這篇研究也是第一個結合微管特性進細胞等校電路做數值探索,並且利用實驗結果對MDA-MB-231細胞在ELF-EMF與控制組的差異進行分析。實驗結果結合結合COMSOL軟體以及等校電路進行比較後,最終得到ELF-EMF對MDA-MB-231的影響。本篇研究認為ELF-EMF會抑制細胞微管的聚合,不僅進低了微管體積增加時的速率,在微管縮減時也造成了加速解聚的效果,因此ELF-EMF對微管的影響也影響到了癌細胞的功能,例如細胞蔓延以及延長有絲分裂。

    In recent years, many studies have shown that extremely low frequency electromagnetic fields (ELF-EMF) influences cellular processes such as metabolism, motility, proliferation and apoptosis. In this study, three-dimensional cell capture and sensing array electrode (3D ECCSA) and an ELF-EMF device are integrated for real-time, non-invasive monitoring MDA-MB-231 cells under ELF-EMF. The cell impedance, activity and behavior are monitored by 3D ECCSA and microscope over a long period of time (12 h). In this period, MDA-MB-231 cell goes through three different stages: cell spreading, mitotic cell rounding, and cell division, which can be measured by changes in impedance. In addition, that is the first time that an equivalent circuit model of cell combined with microtubules, numerical investigation and the experimental results are utilized to analyze different status of human breast cancer cell MDA-MB-231 under ELF-EMF and control condition. The experimental results are compared with the numerical solutions from a circuit model of the single-cell by commercial COMSOL software package. Finally, relationship between cellular processes and ELF-EMF effect on MDA-MB-231 are explained by the electrical methods from the simulation and experimental results. This study suggests that ELF_EMF impedes the microtubules assembly, which slows down the increment of microtubules volume and accelerates the decrement of microtubules volume. As a result, the ELF_EMF influence on the microtubules of cancer cell may inhibit cellular function such as inhibiting cell spreading and prolonging mitosis.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENT IV CONTENTS V LIST OF TABLES VII LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1-1 Background and motivation 1 1-1-1 Background 1 1-1-2 Motivation 2 1-2 Organization of thesis 4 CHAPTER 2 MATERIALS AND METHODS 5 2-1 Cell line 5 2-2 Single cell trapping and culture pretreatment 5 2-2-1 Poly-L-Lysine 5 2-2-2 Double thymidine block 5 2-2-3 Chip design and ELF-EMF system 6 2-2-4 Long-term impedance measurement 10 2-3 Cell impedance analysis method 11 2-3-1 Electric circuit model of single-cell MDA-MB-231 in a microcavity 11 2-3-2 The electrical model of solution around a single cell 13 CHAPTER 3 EXPERIMENTAL SETUP AND PROCESS 17 3-1 The electrical model of a single cell 17 CHAPTER 4 EXPERIMENT RESULT AND DISCUSSION 19 4-1 Cell capture 19 4-2 Long-term impedance measurement of MDA-MB-231 cells under ELF-EMF and control condition 20 4-3 The estimation and modeling 24 4-3-1 The electrical elements variation with time 24 4-3-2 MTs volume variation versus cell membrane capacitance variation 29 CHAPTER 5 CONCLUSION 32 REFERENCES 34

    M. Destefanis, M. Viano, C. Leo, G. Gervino, A. Ponzetto and F. Silvagno, "Extremely low frequency electromagnetic fields affect proliferation and mitochondrial activity of human cancer cell lines," International Journal of Radiation Biology, vol. 91, no. 12, pp. 964-972, 2015.
    C. A. Buckner, A. L. Buckner, . S. A. Koren, M. A. Persinger and R. M. Lafrenie, "Inhibition of cancer cell growth by exposure to a specific time-varying electromagnetic field involves T-type calcium channels," PLoS One, vol. 10, no. 4, p. e0124136, 2015.
    H. L. Roderick and S. J. Cook, "Roderick, H. Llewelyn, and Simon J. Cook. "Ca 2+ signalling checkpoints in cancer: remodelling Ca 2+ for cancer cell proliferation and survival," Nature Reviews Cancer, vol. 8, no. 5, pp. 361-375, 2008.
    M.-T. Tsai, W.-J. Li, R. S. Tuan and W. H. Chang, "Modulation of osteogenesis in human mesenchymal stem cells by specific pulsed electromagnetic field stimulation," Journal of orthopaedic research, vol. 27, no. 9, pp. 1169-1174, 2009.
    H. C. Lee, M.-N. Hong, S. H. Jung, B. C. Kim, Y. J. Suh, Y.-G. Ko, Y.-S. Lee, B.-Y. Lee, Y.-G. Cho, S.-H. Myung and J.-S. Lee, "Effect of extremely low frequency magnetic fields on cell proliferation and gene expression," Bioelectromagnetics, vol. 36, no. 7, pp. 506-516, 2015.
    J. Gerdes, H. Lemke, H. Baisch, H.-H. Wacker, U. Schwab and H. Stein, "Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67," The journal of immunology, vol. 133, no. 4, pp. 1710-1715, 1984.
    Z. Zhuang, P. Bertheau, M. R. Emmert-Buck, L. A. Liotta, J. Gnarra, W. M. Linehan and I. A. Lubensky, "A microdissection technique for archival DNA analysis of specific cell populations in lesions< 1 mm in size," The American journal of pathology, vol. 146, no. 3, pp. 620-625, 1995.
    L. Wang, L. Wang, H. Yin, W. Xing, Z. Yu, M. Guo and J. Cheng, "Real-time, label-free monitoring of the cell cycle with a cellular impedance sensing chip," Biosensors and Bioelectronics, vol. 25, no. 5, pp. 990-995, 2010.
    A. Parekh, D. Das, S. Das, S. Dhara, K. Biswas, M. Mandal and S. Das, "Bioimpedimetric analysis in conjunction with growth dynamics to differentiate aggressiveness of cancer cells," Scientific reports, vol. 8, no. 1, pp. 1-10, 2018.
    Y. Pan, N. Hu, X. Wei, L. Gong, B. Zhang, H. Wan and P. Wang, "3D cell-based biosensor for cell viability and drug assessment by 3D electric cell/matrigel-substrate impedance sensing," Biosensors and Bioelectronics, vol. 130, no. 1, pp. 344-351, 2019.
    M. Wei, Y. Zhang, G. Li, Y. Ni, S. Wang, F. Zhang, R. Zhang, N. Yang, S. Shao and P. Wang, "A cell viability assessment approach based on electrical wound-healing impedance characteristics," Biosensors and Bioelectronics, Vols. 124-125, pp. 25-32, 2019.
    L. Richert, Y. Arntz, P. Schaaf, J.-C. Voegel and C. Picart, "pH dependent growth of poly (L-lysine)/poly (L-glutamic) acid multilayer films and their cell adhesion properties," Surface Science, vol. 570, no. 1-2, pp. 13-29, 2004.
    G. Chen and X. Deng , "Cell synchronization by double thymidine block," Bio-protocol, vol. 17, 2018.
    C.-Y. Liu, C.-H. Chen, L.-S. Jang and M.-H. Wang, "3D cell capture and sensing array electrode (3D ECCSA) under extremely," Sensors and Actuators B: Chemical, vol. 321, p. 128444, 15 October 2020.
    A. P. Kalra, S. D. Patel, A. F. Bhuiyan, J. Preto, K. G. Scheuer, U. Mohammed, J. D. Lewis, V. Rezania, K. Shankar and J. A. Tuszynski, "Investigation of the Electrical Properties of Microtubule Ensembles under Cell‐Like Conditions," Nanomaterials, vol. 10, no. 2, p. 265, 2020.
    A. Tvorogova, A. Saidova, T. Smirnova and I. Vorobjev, "Dynamic microtubules drive fibroblast spreading," Biology Open, vol. 7, no. 12, 2018.
    C. Jamora and E. Fuchs, "Intercellular adhesion, signalling and the cytoskeleton," Nature Cell Biology, vol. 4, pp. 101-108, 2002.
    C. Janke and J. C. Bulinski , "Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions," Nature Reviews Molecular Cell Biology, vol. 12, p. 773–786, 2011.
    M. Matis, "The Mechanical Role of Microtubules in Tissue Remodeling," BioEssays, vol. 42, no. 5, p. 1900244, 2020.
    J. M. Schober, . Y. A. Komarova, O. Y. Chaga, A. Akhmanova and G. G. Borisy, "Microtubule-targeting-dependent reorganization of filopodia," Journal of Cell Science, vol. 102, no. 7, pp. 1235-1244, 2007.
    O. M. Lancaster, M. L. Berre, A. Dimitracopoulos, D. Bonazzi, E. Zlotek-Zlotkiewicz, R. Picone, T. Duke, M. Piel and B. Baum, "Mitotic Rounding Alters Cell Geometry to Ensure Efficient Bipolar Spindle Formation," Developmental cell, vol. 25, no. 3, pp. 270-283, 2013.
    N. Ramkumar and B. Baum, "Coupling changes in cell shape to chromosome segregation," Nature Reviews Molecular Cell Biology, vol. 17, no. 8, pp. 511-521, 2016.
    C. E. Walczak and R. Heald, "Mechanisms of mitotic spindle assembly and function," International review of cytology, vol. 265, pp. 111-158, 2008.
    K. M. Schukken, Y.-C. Lin, P. L. Bakker, M. Schubert1, S. F. Preuss1, J. E. Simon, H. v. d. Bos, Z. Storchova, Maria Colom ´ e-Tatch ´e, H. Bastians, D. C. Spierings1 and F. Foijer, "Altering microtubule dynamics is synergistically toxic with spindle assembly checkpoint inhibition," Life science alliance, vol. 3, no. 2, 2020.
    C. L. Rieder and H. Maiato, "Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint.," Developmental cell, vol. 7, no. 5, p. 637–651, 2004.
    K. S. Uchida, K. Takagaki, K. Kumada, Y. Hirayama, T. Noda and T. Hirota, "Kinetochore stretching inactivates the spindle assembly checkpoint," Journal of Cell Biology, vol. 184, no. 3, pp. 383-390, 2009.
    R. R. Ramalho, H. Soares and L. V. Melo, "Microtubule behavior under strong electromagnetic fields," Materials Science and Engineering: C, vol. 27, p. 1207–1210, 2007.
    X. Wu, J. Du, W. Song, M. Cao, S. Chen and R. Xia, "Weak power frequency magnetic fields induce microtubule cytoskeleton reorganization depending on the epidermal growth factor receptor and the calcium related signaling.," PloS one, vol. 13, no. 10, 2018.
    D. Gholami, G. Riazi, R. Fathi, M. Sharafi and A. Shahverdi, "Comparison of polymerization and structural behavior of microtubules in rat brain and sperm affected by the extremely low-frequency electromagnetic field," BMC molecular and cell biology, vol. 20, p. 41, 2019.
    M. Giladi, R. S. Schneiderman, T. Voloshin, Y. Porat, M. Munster, R. Blat, S. Sherbo, Z. Bomzon, N. Urman, A. Itzhaki, S. Cahal, A. Shteingauz, A. Chaudhry, E. D. Kirson, U. Weinberg 且 Y. Palti , “Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells”.
    A. V. Tvorogova and I. A. Vorobjev, "Microtubules suppress blebbing and stimulate lamella extension in spreading fibroblasts," Cell and Tissue Biology, vol. 7, p. 43–53, 2013.
    S. Stehbens and T. Wittmann, "Targeting and transport: How microtubules control focal adhesion dynamics," Journal of Cell Biology, vol. 198, no. 4, pp. 481-489, 2012.
    E. Boucrot and T. Kirchhausen, "Endosomal recycling controls plasma membrane area during mitosis," Proceedings of the National Academy of Sciences, vol. 104, no. 19, pp. 7939-7944, 2007.
    M. Tanaka, K. Fujimoto and S. Yumura, "Regulation of the Total Cell Surface Area in Dividing Dictyostelium Cells," Frontiers in Cell and Developmental Biology, vol. 8, 2020.
    A. Kadi, V. Pichard, M. Lehmann, C. Briand, D. Braguer, J. Marvaldi, J.-B. Rognoni and J. Luis, "Effect of Microtubule Disruption on Cell Adhesion and Spreading," Biochemical and biophysical research communications, vol. 246, no. 3, pp. 690-695, 1998.
    N. Mchedlishvili, H. K. Matthews, A. Corrigan and B. Baum*, "Two-step interphase microtubule disassembly aids spindle morphogenesis," BMC biology, vol. 16, no. 1, pp. 1-16, 2018.

    無法下載圖示 校內:2025-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE