簡易檢索 / 詳目顯示

研究生: 劉益良
Liu, Yi-Liang
論文名稱: 利用可切換式差動電感來實現GSM (1.8 GHz) / WLAN (2.4 GHz)共存系統應用的壓控振盪器
A VCO Circuit Using Switchable Differential Inductor for The GSM (1.8 GHz) / WLAN (2.4 GHz) Co-existence System Application
指導教授: 黃尊禧
Huang, Tzuen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 161
中文關鍵詞: 壓控振盪器共存
外文關鍵詞: VCO, Co-existence
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近來,結合GSM以及WLAN操作的多標準多頻帶的收發機已經獲得高度的關注。對於此類的收發機,在直接轉頻架構中整合可重組的射頻電路區塊是達到低成本且低功率目標的有效方式。若使用直接轉頻架構,則我們需要有不同頻帶的LO訊號。最簡單而直接的方式,係整合兩顆分別為GSM及WLAN操作頻率的壓控振盪器(VCO)電路來完成。然而,晶圓面積的消耗將導致成本的增加。為了成本上的考量,發展單顆並能提供頻率以滿足GSM (1.8 GHz)以及WLAN (2.4 GHz)的頻帶的可重組之VCO電路的重要性已日益增高。
    在本論文中的可重組之VCO電路係使用TSMC 0.18 μm 1P6M RF CMOS製程製作。利用可切換式電容陣列來提供一個較寬的可調變頻率範圍而不會劣化相位雜訊;利用可切換式電感結構來提供可切換至GSM或WLAN頻帶的中心振盪頻率。在電感結構方面則是使用本實驗室所研製的一個新型可切換式差動電感。利用此新型電感,可大幅的減少此VCO電路的面積消耗,降低IC製造成本。
    本論文的新穎性有二:首先,我們提出一新型可切換式差動電感的完全整合,使得可重組之雙頻帶VCO電路的晶片面積消耗得以縮小。再者,實現整合此雙頻之VCO電路於GSM與WLAN共存系統的可能性。

    Recently, a multi-standard / multi-band terminal which combines the operation of GSM with WLAN has gained a lot of interest. The effective way to achieve the targets of low cost and low power for such terminals is to integrate the re-configurable RF blocks in direct conversion architecture. By using a direct conversion structure, we need different LO signals associated with the operation bands. The simplest and direct way is to integrate two VCO’s for GSM and WLAN respectively. However, the chip area consumption will be increased and thus the cost increases. For the cost down reason, it becomes important to develop a re-configurable VCO circuit which can provide the frequency either in the GSM (1.8 GHz) band or in the WLAN (2.4 GHz) band.
    In this thesis, we try to develop such a re-configurable VCO circuit by using TSMC 0.18 um 1P6M RF CMOS technology. By way of switching the capacitance array, the tuning range becomes wider without the degradation of phase noise. By way of switching the inductor, the center frequency of oscillation can be either in GSM band or in WLAN band. By applying the newly proposed switchable differential inductor developed from our laboratory, the integrated VCO circuit can possess the possibly smallest chip area. Therefore, the area-cost-efficiency can be achieved.
    The innovatory contributions of this thesis are as followed: The first, we propose the full integration of a new kind of switchable differential inductor to reduce the chip area consumption of a re-configurable dual-band VCO. The second, we confirm the integration possibility of such VCO circuit to a GSM and WLAN co-existence system.

    摘要...................................................... III Abstract ................................................. IV LIST OF TABLES............................................ X LIST OF FIGURES........................................... XII Chapter 1 Introduction ................................... 1 1-1 Brief Introduction.................................... 1 1-2 Motivation............................................ 2 1-3 The Brief Introduction of Global System for Mobile Communications (GSM) Standard......................... 5 1-4 The Brief Introduction of Wireless Local Area Network (WLAN) Standard .............................. 7 1-5 Thesis Organization .................................. 9 Chapter 2 The Principle of the Oscillator and the Discussion of Characteristics................... 11 2-1 Principle of the Oscillator .......................... 11 2-1-1 Positive Feedback Analysis ......................... 11 2-1-2 One Port Analysis................................... 13 2-2 LC Oscillator and High-Frequency Passive Components... 16 2-2-1 Negative-Gm Oscillator.............................. 16 2-2-2 Voltage-Controlled Oscillator(VCO) ................. 19 2-2-3 Varactor ........................................... 22 2-2-4 Inductor............................................ 27 2-3 Characteristics of the Oscillator..................... 38 2-3-1 Quality Factor (Q) of an Oscillator................. 38 2-3-2 Phase Noise (PN).................................... 41 2-3-3 Harmonics Distortion ............................... 50 2-3-4 Pulling Effect...................................... 52 2-3-5 Pushing Effect...................................... 52 2-3-6 Temperature Effect ................................. 53 Chapter 3 Design of Voltage-Controlled Oscillator ........ 55 3-1 Architecture of CMOS VCO ............................. 55 3-2 Design of CMOS VCOs................................... 59 3-2-1 Design Flow......................................... 59 3-2-2 Design of First VCO Testkey (VCO1) ................. 60 3-2-2-1 Choose the Transistor Size........................ 61 3-2-2-2 Switched Differential Inductor.................... 65 3-2-2-3 Core Circuit ..................................... 69 3-2-2-4 Buffer Stage...................................... 73 3-2-2-5 Layout and Photo of VCO1.......................... 76 3-2-3 Design of Second VCO Testkey (VCO2)................. 77 Chapter 4 Simulation Results.............................. 87 4-1 Simulation results of VCO1............................ 87 4-1-1 Tuning Range of VCO1................................ 89 4-1-2 Phase Noise......................................... 92 4-1-3 Transient Response.................................. 94 4-1-4 Power Spectrum...................................... 97 4-1-5 Performance Comparison with Other Reported VCOs and Performance Table............................... 100 4-2 Simulation results of VCO2............................ 102 4-2-1 Tuning Range of VCO2................................ 102 4-2-2 Phase Noise......................................... 106 4-2-3 Transient Response.................................. 108 4-2-4 Power Spectrum...................................... 111 4-2-5 Performance Comparison with Other Reported VCOs and Performance Table............................... 114 Chapter 5 Measurement Results............................. 117 5-1 Measurement Considerations............................ 117 5-2 Measurement results of VCO1........................... 119 5-2-1 Tuning Range of VCO1................................ 120 5-2-2 Phase Noise......................................... 125 5-2-3 Power Spectrum...................................... 129 5-2-4 Performance Comparison with Other Reported VCOs .... 134 Chapter 6 Improvement of VCO1 (VCO3)...................... 137 6-1 Tuning Range of VCO3.................................. 139 6-2 Phase Noise........................................... 142 6-3 Transient Response ................................... 144 6-4 Power Spectrum........................................ 147 6-5 Performance Comparison with Other Reported VCOs and Performance Table..................................... 150 Chapter 7 Conclusions and Future Work .................... 153 7-1 Conclusions........................................... 153 7-2 Future Work .......................................... 157 Reference................................................. 158

    [1] Adil Koukab, Yu Lei and Michel Declercq, “Multi-Standard Carrier
    Generation System for Quad-band GSM / WCDMA (FDD-TDD) / WLAN(802.11 a-b-g)
    Radio,” Proceedings of ESSCIRC, Grenoble, France, 2005.
    [2] Evangelos S. Angelopoulos, Yorgos E. Stratakos, Antonis I. Kostaridis,
    Dimitra I. Kaklamani and Nikolaos K. Uzunoglu, “Multiband Miniature
    Coplanar Waveguide Slot Antennas for GSM-802.11b and 802.11b-802.11a
    Wireless Applications,” 2003 IEEE Wireless Communications and Networking
    (WCNC), vol.1, pp.103-108, 16-20 March 2003.
    [3] Sotiris Bantas, Yorgos Stratakos*, Nick Kanakaris, Yorgos Katsoulis,
    Pandelis Papadopoulos, Michael Margaras, Vicky Korou, Hamed Peyravi and
    Yorgos Koutsoyannopoulos, “Architecture Considerations and Integrated-
    Passives-Based Design for a Dual-Mode GPRS-WLAN SiGe RF Transceiver,”
    2003 IEEE 58th Vehicular Technology Conference ( VTC), vol.4, pp.2237-
    2241, 6-9 Oct. 2003.
    [4] Mou Shouxian, Ma Jianguo, Yeo Gat Seng, and Do Manh Anh, “An Integrated
    Dual-band Low Noise Amplifier for GSM and Wireless LAN Applications,”
    Proceedings of IEEE International Systems-on-Chip (SOC) Conference, 2003,
    pp.67- 70, 17-20 Sept. 2003.
    [5] Ming-Ching Kuo, Chun-Ming Hsu, Chun-Lin KO, Tsung-Hsien Lin, Yi-Bin Lee,
    “A CMOS WLAN/GPRS Dual-mode RF Front-end Receiver,” 2004 IEEE Radio
    Frequency Integrated Circuits (RFIC) Symposium, pp.153-156, 6-8 June
    2004.
    [6] Jan Steinkamp, Frank Henkel and Peter Waldow, “A Multi-Mode Wide-Band
    130 nm CMOS VCO for WLAN and GSM/UMTS,” IEEE Internatfonal Workshop on
    Radio-Frequency Integration Technology (RFIT2005), pp.105-108, Nov 30-Dec
    02, 2005.
    [7] O. Charlon1, M. Locher, H. Visser, D. Duperray, J. Chen, M. Judson, A.
    Landesman, C. Hritz, U. Kohlschuetter, . Zhang, C. Ramesh, A. Daanen, M.
    Gao, S. Haas, V. Maheshwari, A. Bury, G. Nitsche, A. Wrzyszcz, W. Redman-
    White, H. Bonakdar, R. El Waffaoui, M. Bracey, “A Low-Power High-
    Performance SiGe BiCMOS 802.11a/b/g Transceiver IC for Cellular and
    Bluetooth Co-Existence Applications,” IEEE Journal of Solid-State
    Circuits, vol.41, pp.1503-1512, July 2006.
    [8] http://www.atheros.com/pt/bulletms/AR6001X_Bulletin.pdf
    [9] http://www.sirific.com/PDF/sw4100.pdf.
    [10] Chao-Shiun Wang, Wei-Chang Li, and Chorng-Kuang Wang, ”A Multi-band
    Multi-standard RF front-end for IEEE 802.16a and IEEE 802.11a/b/g
    applications,” IEEE International Symposium on Circuits and Systems
    (ISCAS 2005), vol.4, pp.3974-3977, 23-26 May 2005.
    [11] Seong-Mo Yim and Kenneth K.O., “Demonstration of a switched Resonator
    Concept in a Dual-Band Monolithic CMOS LC-tuned VCO,” IEEE 2001 Custom
    Integrated Circuits Conference, pp.205-208, 2001.
    [12] Zhenbiao Li and Kenneth K.O., “A 1-V Low Phase Noise Multi-band CMOS
    Voltage Control Oscillator with Switched Inductors and Capacitors,” 2004
    IEEE Radio Frequency Integrated Circuit Symposium, pp.467-470, 2004.
    [13] Chun-Yi Kuo, Che-Fu Liang, and Shen-Iuan Liu, “A 5.8-/5.2-/2.4-GHz SiGe
    LC VCO with Wide Tuning Range,” IEEE 2004 VLSI/CAD, Taiwan, 5.2, 2004.
    [14] http://www.cs.nccu.edu.tw/~lien/NIIslide/GSM/leftframe.htm
    [15] 唐政,”802.11無線區域網路通訊協定及應用”,文魁資訊股份有限公司,2003。
    [16] Behzad Razavi, “RF Microelectronics,” Prentice Hall, 1998.
    [17] 王瑞祿,”射頻與微波電路技術”,第四期通訊科技教育改進計畫,2005。
    [18] 袁帝文、王岳華、謝孟翰、王弘毅,”高頻通訊電路設計”,高立圖書有限公司,
    2004。
    [19] Behzad Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw
    Hill, 2002.
    [20] Behzad Razavi, “Phase-Locking in High-Performance Systems,” WILEY-
    INTERSCIENCE, 2003.
    [21] Pietro Andreani and Sven Mattisson, “On the Use of MOS Varactor in RF
    VCOs,” IEEE Journal of Solid-State Circuits, vol.35, No.6, pp.905-910,
    June 2000.
    [22] C. Patrick Yue and S. Simon Wang, “On-Chip Spiral Inductors with
    Patterned Ground Shields for Si-Based RF ICs,” IEEE Journal of Solid-
    State Circuits, vol.33, No.5, pp.743-752, May 1998.
    [23] 施俊仰,”對稱式平面螺旋型電感之研究”,國立交通大學電信工程研究所碩士論
    文,2002。
    [24] Jaime Aguilera and Roc Berenguer, “Design and Test of Integrated
    Inductors for RF Applications,” KLUWER ACADEMIC PUBLISHERS, 2003.
    [25] Jan Craninckx and Michiel S. J. Steyaert, “A 1.8-GHz Low-Phase-Noise
    CMOS VCO Using Optimized Hollow Spiral Inductors,” IEEE Journal of Solid-
    State Circuits, vol.32, pp.736-744, May 1997.
    [26] Trond Ytterdal, Yuhua Cheng and Tor A. Fjeldly,”Device Modeling for
    Analog and RF CMOS Circuit Design,” Wiley, 2003.
    [27] Thomas H. Lee and Ali Hajimiri, “Oscillator Phase Noise: A Tutorial,”
    IEEE Journal of Solid-State Circuits, vol.32, No.3, pp.326-336, March
    2000.
    [28] Joachim N. Burghartz, Mehmet Soyuer and Keith A. Jenkins, “Integrated RF
    and Microwave Components in BiCMOS Technology,” IEEE TRANSACTIONS ON
    ELECTRON DEVICES, vol.43, NO.9, pp.1559-1570, September 1996.
    [29] Burghartz J.N., Soyuer M., Jenkins K.A., Kies M., Dolan M., Stein K.J.,
    Malinowski J. and Harame D.L., ”Integrated RF components in a SiGe
    bipolar technology,” IEEE Journal of Solid-State Circuits, vol. 32,
    issue 9, pp.1440-1445, Sept. 1997.
    [30] Johan Janssens and Michiel Steyaert, ”CMOS CELLULAR RECEIVER FRONT-
    ENDS,” KLUWER ACADEMIC PUBLISHERS, 2002.
    [31] 洪煜傑,”應用於鎖相迴路中自我校準之壓控振盪器設計”,國立清華大學電機工程
    研究所碩士論文,2004。
    [32] 沈致賢,”壓控振盪器之設計與實作”,國立台灣大學電子工程學研究所碩士論文,
    2002。

    下載圖示 校內:2007-08-24公開
    校外:2007-08-24公開
    QR CODE