簡易檢索 / 詳目顯示

研究生: 黃建勳
Huang, Jian-Syun
論文名稱: 基於修正型ARMAX模型和OKID以適用於未知非線性奇異系統之低階主動容錯型狀態空間自調式軌跡追蹤器
A Low-order Active Fault-tolerant State-space Self-tuner for the Unknown Sampled-data Nonlinear Singular System Using OKID and Modified ARMAX Model-based System Identification
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 82
中文關鍵詞: 狀態空間自調式控制資料取樣非線性奇異系統線性自迴歸移動平均模型容錯控制觀測/卡爾曼濾波器鑑別
外文關鍵詞: State space self-tuning control, sampled-data nonlinear singular system, ARMAX model, fault tolerant control, observer/Kalman filter identification
相關次數: 點閱:138下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出兩種適用於未知資料取樣非線性奇異系統的控制法則。一種是基於觀測/卡爾曼濾波器鑑別之具有狀態負迴授增益和正迴授增益的觀測型數位再設計追蹤器,以提出之控制法則能有效控制未知資料取樣非線性奇異系統。另一種控制法則是基於修正型線性自迴歸移動平均模型和觀測/卡爾曼濾波器鑑別以適用於未知非線性奇異系統之低階主動容錯型狀態空間自調式軌跡追蹤器。首先,利用觀測/卡爾曼濾波器鑑別去決定未知系統之階數與修正型線性自迴歸移動平均模型之優良的初始參數,以改善鑑別的效率,然後,基於修正型線性自迴歸移動平均模型之系統鑑別,一個相對應的適應性數位控制法則被提出以適用於狀態不可測之未知資料取樣非線性奇異系統。此外,對於未知資料取樣非線性奇異系統,為了克服輸入干擾,藉由修正型的狀態空間自調式控制以提出容錯控制法則。此控制法則可以有效處理系統輸入突發式和逐步式之故障。最後,利用一些範例證明提出之設計方法的有效性。

    In this thesis, we present two control schemes for the unknown sampled-data nonlinear singular system. One is an observer-based digital redesign tracker with the state-feedback gain and the feed-forward gain based on off-line observer/Kalman filter identification (OKID) method. The presented control scheme is able to make the unknown sampled-data nonlinear singular system to well track the desired reference signal. The other is an active fault tolerance state-space self-tuner using the OKID method and modified autoregressive moving average with exogenous inputs (ARMAX) model-based system identification for unknown sampled-data nonlinear singular system with input faults. First, one can apply the off-line OKID method to determine the appropriate (low-) order of the unknown system order and good initial parameters of the modified ARMAX model to improve the convergent speed of recursive extended-least-squares (RELS) method. Then, based on modified ARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown sampled-data nonlinear singular system with immeasurable system state. Moreover, in order to overcome the interference of input fault, one can use a fault-tolerant control scheme for unknown sampled-data nonlinear singular system by modifying the conventional state space self-tuning control (STC). The presented method can effectively cope with partially abrupt and/or gradual system input faults. Finally, some illustrative examples are given to demonstrate the effectiveness of the presented design methodologies.

    中文摘要 I Abstract II Acknowledgments IV List of Contents V List of Figures VII Chapter 1. Introduction 1-1 2. Observer/Kalman Filter Identification for Unknown Sampled-data Nonlinear Singular Systems 2-1 2.1 Basic observer equation 2-2 2.2 Computation of Markov parameters 2-3 2.2.1 System Markov parameters 2-4 2.2.2 Observer gain Markov parameters 2-4 2.2.3 Eigensystem realization algorithm 2-4 3. Quadratic Suboptimal Tracker and Observer for the Unknown Sampled-data Nonlinear Singular System 3-1 3.1 Observer-based tracker for the unknown sampled-data nonlinear singular system 3-2 3.2 Prediction-based linear quadratic digital tracker 3-3 3.3 Prediction-based digital observer 3-4 3.4 Design procedure 3-6 4 An Alternative Digital Tracker for the Unknown Sampled-data Nonlinear Singular System 4-1 5 Modified ARMAX Model-Based Self-Tuner for the Unknown Sampled-data Nonlinear Singular System 5-1 5.1 Modified ARMAX model for self-tuning control scheme 5-2 5.2 State-space innovation form for modified ARMAX model 5-4 5.3 The initial parameters of ARMAX model based on OKID 5-6 5.4 Modified ARMAX model-based state-space self-tuner for the unknown sampled-data nonlinear singular system with off-line OKID estimated initial parameters 5-6 6 Self-Tuning Control with Fault Tolerance 6-1 6.1 Problem statement 6-2 6.2 Modified active fault tolerance 6-3 7 Illustrative Examples 7-1 7.1 Example 1 7-1 7.2 Example 2 7-8 8 Conclusion 8-1 Reference R-1 Appendix A Singular System Descriptions A-1

    [1] F. L. Lewis, “A survey of linear singular systems,” J. Circuit Syst. Signal Process., vol. 5, pp. 3–36, 1986.
    [2] L. Dai, Singular Control Systems. Berlin, Germany: Springer-Verlag, 1989.
    [3] J. S. H. Tsai, C. T. Wang, and L. S. Shieh, “Model conversion and digital redesign of singular systems,” Journal of Franklin Institute, vol. 330, pp. 1063-1086, 1993.
    [4] H. J. Wang, A. K. Xue, Y. F. Guo, and R. Q. Lu, “Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays,” Journal of Zhejiang University-Science A, vol. 9, no. 4, pp. 546-551, 2008.
    [5] B. G. Mertzios, M. A. Christodoulou, B. L. Syrmos, and F. L. Lewis, “Direct controllability and Observability time domain conditions of singular systems,” IEEE Transactions Automatic Control, vol. 33, no. 8, pp. 788-7 91, August 1988.
    [6] C. J. Wang and H. E. Liao, “Impulse observability and impulse controllability of linear time-varying singular systems,” Automatica, vol. 37, pp. 1867-1872, 2001.
    [7] K. Warwick, “Self-tuning regulators - a state-space approach,” International Journal of Control,vol. 33, pp. 839-858, 1981.
    [8] Y. T. Tsay and L. S. Shieh, “State-space approach for self-tuning feedback control with pole assignment,” IEE Proceeding D-Control Theory and Application, vol. 123, pp. 93-101, 1981.
    [9] L. S. Shieh, Y. L. Bao, and F. R. Chang, “State-space self-tuning regulators for general multivariable stochastic systems,” IEE Proceeding D-Control Theory and Application, vol. 136, pp. 17-27, 1989.
    [10] K. J. Äström and B. Wittenmark, Adaptive Control. NY: Addison-Wesley, 1989.
    [11] J. S. H. Tsai, Y. Y. Lee, P. Cofie, L. S. Shieh, and X. M. Chen, “Active fault tolerant control using state-space self-tuning control approach,” International Journal of Systems Science, vol. 37, no. 11, pp. 785-797, Sep. 2006.
    [12] J. N. Juang, Applied system identification. New Jersey: Prentice-Hell, 1994.
    [13] M. J. Lin, “Novel design methodologies for quadratic observers and trackers of sampled–data linear singular system,” M.S. Thesis, University of Cheng-Kung, Tainan, Taiwan, 2009.
    [14] S. M. Guo, L. S. Shieh, G. Chen, and C.F. Lin,”Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems-I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, Nov. 2000.
    [15] Y. C. Chen, “An Low-Order Active Fault-Tolerant State-Space Self-Tuner for Unknown Linear Singular System Using OKID and Modified ARMAX Model-Based System Identification,” M.S. Thesis, University of Cheng-Kung, Tainan, Taiwan, 2009.
    [16] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin “Effective chaotic orbit tracker: A prediction-based digital redesign approach,” IEEE Transaction Circuits and Systems-I: Fundamental Theory and Applications, vol. 47, no. 11, pp.1557-1570, 2000.
    [17] L. Ljung, System Identification Theory for the User, Englewood Cliffs. NJ: Prentice-Hall,1987.
    [18] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 133-142, 1999.
    [19] Y. T. Tsay, L. S. Shieh, and S. Barnett, Structural Analysis and Design of Multivariable Control Systems: An Algebraic Approach. Berlin, Heidelberg: Springer-Verlag, 1988.
    [20] L. S. Shieh and Y. T. Tsay, “Transformations of a class of multivariable control systems to block companion forms,” IEEE Transactions on Automatic Control, vol. AC-27, pp. 199-203, 1982.
    [21] L. S. Shieh, C. T. Wang, and Y. T. Tsay, “Multivariable state feedback self-tuning controllers,” Stochastic Analysis and Applications, vol. 3, no. 2, pp. 189-212, 1985.
    [22] G.. G.. Yen and L. W. Ho, “Online multiple-model-based fault diagnosis and accommodation,” IEEE Transactions on Industrial Electronics, vol. 50, pp. 296-312, 2003.
    [23] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 133-142, 1999.
    [24] T. Soderstrom and P. Stoica, System Identification, Englewood Cliffs: Prentice-Hall, 1989.
    [25] J. S. H. Tsai, Y. Y. Lee, P. Cofie, L. S. Shieh, and X. M. Chen, “Active fault tolerant control using state-space self-tuning control approach,” International Journal of Systems Science, vol 37, no. 11, pp. 785-797, Sep. 2006.
    [26] J. D. Roberts, “Linear model reduction and solution of the algebraic Riccati equation by use of the sign function,” International Journal Control, vol. 32, pp. 677-687, 1980.
    [27] H. J. Lee, J. B. Park, and Y. H. Joo, “An efficient observer-based sampled-data control: digital redesign approach,” IEEE Transaction Circuits and Systems-I: Fundamental Theory and Applications, vol. 50, no. 12, pp. 1595-1600, 2003.
    [28] L. S. Shieh, Y. T. Tsay, and R. E. Yates, “Some properties of matrix-sign functions derived from continued fractions,” IEE Proceedings D - Control Theory and Applications, vol. 130, no. 3, pp. 111-118, 1983.
    [29] F. R. Ganmacher, The Theory of Matrices II. Chelsea, New York, 1974.
    [30] R.Nikoukhah, A. S. Willsky, and B. C. Levy, “Boundary-value descriptor systems:Well-posedness, reachability and observability,” International Journal of Control, vol. 46, no. 5, pp. 1715-1737, 1987.
    [31] S. L. Campbell, Singular Systems of Differential Equations I. Pitman, New York, 1982.

    下載圖示 校內:2012-07-23公開
    校外:2012-07-23公開
    QR CODE