| 研究生: |
邱承浩 Chiu, Cheng-Hao |
|---|---|
| 論文名稱: |
復健上肢外骨骼之被動速度控制器研究 Study on Passive Velocity Controller for Rehabilitation Upper-Limb Exoskeleton System |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 上肢外骨骼 、復健機器人 、動態運動原語 、速度場 、被動性 、能量槽 |
| 外文關鍵詞: | Upper-Limb Exoskeleton, Rehabilitation Robotics, Dynamic Movement Primitives, Velocity Field, Passivity, Energy Tank |
| 相關次數: | 點閱:6 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著老年人口比例提高,復健治療的需求增加,因此醫療人力的短缺成為值得關注的重視議題。而對於重複性高且時間長的復健訓練來說,外骨骼是可能的解決方案,主要原因是其能大幅節省復健治療師的時間,幫助解決醫療人力短缺的問題。本論文以上肢外骨骼為研究對象,設計了按需輔助策略的復健控制器,且對其被動性提出證明,讓患者能在確保外骨骼控制安全性的前提下,透過復健訓練慢慢恢復肌肉力量。本論文將動態運動原語結合速度場,提出新穎的復健軌跡命令規劃方法,兼具動態運動原語的靈活性與速度場及時間解耦的特性,讓復健軌跡命令規劃能實現按需輔助策略。為了確保系統的被動性,本論文所實現之扭矩控制器採用了能量槽設計,其中被動性理論確保系統中的能量會越來越少,讓系統有一定程度的安全性。能量槽則是透過管制能量流動,且根據剩餘能量限制控制行為,確保系統的被動性。最後,透過模擬與實驗,驗證整體控制架構的可行性,且以消融實驗展示控制架構中各部分的必要性。
With the increasing proportion of elderly individuals, the demand for rehabilitation therapy is rising, while the shortage of medical personnel has become a critical issue. For repetitive and time-consuming rehabilitation training, exoskeletons offer a promising solution. They can significantly reduce the workload of therapists and help address the problem of limited medical resources. This study focuses on an upper-limb exoskeleton and proposes a rehabilitation controller based on an assist-as-needed strategy. The passivity of the controller is proven to ensure safety during operation. With this approach, patients can gradually recover muscle strength through rehabilitation training while maintaining a safe interaction with the exoskeleton. A novel method for rehabilitation trajectory planning is proposed, which combines Dynamic Movement Primitives (DMPs) with a velocity field. This method maintains the flexibility of DMPs while decoupling speed and time, enabling the implementation of the assist-as-needed strategy in trajectory generation. To guarantee system passivity, the torque controller adopts an energy tank design. According to passivity theory, the total energy in the system should decrease over time, ensuring a certain level of safety. The energy tank manages energy flow and limits control actions based on the remaining energy, thereby preserving system passivity. Finally, both simulations and experiments are conducted to validate the effectiveness of the proposed control framework. An ablation study is also performed to demonstrate the necessity of each component within the control system.
[1] K. Wang, X. Wang, and Y. Wang, “Factors, mechanisms and improvement methods of muscle strength loss,” Frontiers in Cell and Developmental Biology, vol. 12, art. no. 1509519, Dec. 2024.
[2] S. Salvalaggio, S. Gambazza, M. Andò, I. Parrotta, F. Burgio, L. Danesin, P. Busan, S. Zago, D. Mantini, D. D’Imperio, M. Zorzi, N. Filippini, and A. Turolla, “Modeling upper limb rehabilitation induced recovery after stroke: The role of attention as a clinical confounder,” Physical Therapy, vol. 105, no. 2, pzae148, Feb. 2025.
[3] A. Guatibonza, L. Solaque, A. Velasco, L. Peñuela, N. Méndez, H. Castellanos, and E. J. Reinoso, “Assistive robotics for upper limb physical rehabilitation: A systematic review and future prospects,” Chinese Journal of Mechanical Engineering, vol. 37, article no. 69, Jul. 2024.
[4] S. Schaal, A. Ijspeert, and A. Billard. “Computational approaches to motor learning by imitation,” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, vol. 358, no. 1431, pp.537-547, Feb. 2003.
[5] 洪瑋伶,基於動態運動原語之機械手臂軌跡命令修正研究,碩士論文,國立成功大學,電機工程學系,2023。
[6] L. Huang, J. Zheng, Y. Gao, Q. Song, and Y. Liu, “A lower limb exoskeleton adaptive control method based on model-free reinforcement learning and improved dynamic movement primitives,” Journal of Intelligent & Robotic Systems, vol. 111, no. 1, Feb. 2025.
[7] 黃嘉浚,基於控制障礙函數之線上動態運動原語避障軌跡修正研究,碩士論文,國立成功大學,電機工程學系,2024。
[8] Z. Li, Z. Huang, W. He, and C.-Y. Su, "Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals," in Proceeding of the IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1664–1674, 2017.
[9] L. Ferrante, M. Sridharan, C. Zito and D. Farina, "Toward Impedance Control in Human–Machine Interfaces for Upper-Limb Prostheses," IEEE Transactions on Biomedical Engineering, vol. 71, no. 9, pp. 2630-2641, Sept. 2024.
[10] C. Ochoa Luna, M. Habibur Rahman, M. Saad, P. S. Archambault, and S. Bruce Ferrer, "Admittance-Based Upper Limb Robotic Active and Active-Assistive Movements," International Journal of Advanced Robotic Systems, vol. 12, no. 9, p. 117, 2015.
[11] H. J. Asl, T. Narikiyo and M. Kawanishi, "An Assist-as-Needed Velocity Field Control Scheme for Rehabilitation Robots," in Proceeding of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018.
[12] Y. Guo, H. Wang, Y. Tian, and D. G. Caldwell, “Task performance-based adaptive velocity assist-as-needed control for an upper limb exoskeleton,” Biomedical Signal Processing and Control, vol. 73, p. 103474, Dec. 2021.
[13] A. Martínez, B. Lawson, C. Durrough and M. Goldfarb, "A Velocity-Field-Based Controller for Assisting Leg Movement During Walking With a Bilateral Hip and Knee Lower Limb Exoskeleton," IEEE Transactions on Robotics, vol. 35, no. 2, pp. 307-316, April 2019.
[14] L. Zhang, F. Xi, S. Guo, and H. Yu, “Force-Field based assisted control for upper-limb rehabilitation robots,” Biomedical Signal Processing and Control, vol. 99, p. 106896, Sep. 2024.
[15] R. Jiao, W. Liu, R. Rashad, J. Li, M. Dong, and S. Stramigioli, “A novel robotic system enabling multiple bilateral upper limb rehabilitation training via an admittance controller and force field,” Mechatronics, vol. 97, p. 103112, Nov. 2023.
[16] L. L. Cai, A. J. Fong, C. K. Otoshi, Y. Liang, J. W. Burdick, R. R. Roy, and V. R. Edgerton, “Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning,” J. Neurosci., vol. 26, pp. 10 654–10 658, 2006.
[17] S. Srivastava P. C. Kao; S. H. Kim; P. Stegall; D. Zanotto; J. S. Higginson, "Assist-as-Needed Robot-Aided Gait Training Improves Walking Function in Individuals Following Stroke," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 23, no. 6, pp. 956-963, Nov. 2015.
[18] A. U. Pehlivan, D. P. Losey and M. K. O'Malley, "Minimal Assist-as-Needed Controller for Upper Limb Robotic Rehabilitation," IEEE Transactions on Robotics, vol. 32, no. 1, pp. 113-124, Feb. 2016.
[19] H. J. Asl, M. Yamashita, T. Narikiyo and M. Kawanishi, "Field-Based Assist-as-Needed Control Schemes for Rehabilitation Robots," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 2100-2111, Aug. 2020.
[20] T. Teramae, T. Noda and J. Morimoto, "EMG-Based Model Predictive Control for Physical Human–Robot Interaction: Application for Assist-As-Needed Control," IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 210-217, Jan. 2018.
[21] J. Zhang and C. C. Cheah, "Passivity and Stability of Human–Robot Interaction Control for Upper-Limb Rehabilitation Robots," IEEE Transactions on Robotics, vol. 31, no. 2, pp. 233-245, April 2015.
[22] N. Chopra, M. Fujita, R. Ortega and M. W. Spong, "Passivity-Based Control of Robots: Theory and Examples from the Literature," IEEE Control Systems Magazine, vol. 42, no. 2, pp. 63-73, April 2022,
[23] V. Duindam and S. Stramigioli, “Port-Based asymptotic curve tracking for mechanical systems,” European Journal of Control, vol. 10, no. 5, pp. 411–420, Jan. 2004.
[24] C. Schindlbeck and S. Haddadin, "Unified passivity-based Cartesian force/impedance control for rigid and flexible joint robots via task-energy tanks," in Proceeding of 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 2015.
[25] A. Dietrich, C. Ott and S. Stramigioli, "Passivation of Projection-Based Null Space Compliance Control Via Energy Tanks," IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 184-191, Jan. 2016.
[26] A. Dietrich, X. Wu, K. Bussmann, C. Ott, A. Albu-Schäffer and S. Stramigioli, "Passive Hierarchical Impedance Control Via Energy Tanks," IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 522-529, April 2017.
[27] Y. Michel, M. Saveriano and D. Lee, "A Novel Safety-Aware Energy Tank Formulation Based on Control Barrier Functions," IEEE Robotics and Automation Letters, vol. 9, no. 6, pp. 5206-5213, June 2024.
[28] N. Ramuzat, S. Boria and O. Stasse, "Passive Inverse Dynamics Control Using a Global Energy Tank for Torque-Controlled Humanoid Robots in Multi-Contact," IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2787-2794, April 2022.
[29] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical Movement Primitives: learning attractor models for motor behaviors,” Neural Computation, vol. 25, no. 2, pp. 328–373, Nov. 2012.
[30] M. Ginesi, N. Sansonetto, and P. Fiorini, “Overcoming some drawbacks of Dynamic Movement Primitives,” Robotics and Autonomous Systems, vol. 144, p. 103844, Jul. 2021.
[31] E. Y. Chia, Y. K. Chang, Y. C. Chang, Y. L. Chen, T. C. Chien, M. L. Chiang, L. C. Fu, J. S. Lai, L. Lu, “Assist-As-Needed rehabilitation using velocity field for upper limb exoskeleton,” Mechatronics, vol. 97, p. 103115, Dec. 2023.
[32] P. Y. Li and R. Horowitz, "Passive velocity field control of mechanical manipulators," IEEE Transactions on Robotics and Automation, vol. 15, no. 4, pp. 751-763, Aug. 1999.
[33] K. Kronander and A. Billard, "Passive Interaction Control With Dynamical Systems," IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 106-113, Jan. 2016.
[34] M. Najafi, C. Rossa, K. Adams and M. Tavakoli, "Using Potential Field Function With a Velocity Field Controller to Learn and Reproduce the Therapist's Assistance in Robot-Assisted Rehabilitation," IEEE/ASME Transactions on Mechatronics, vol. 25, no. 3, pp. 1622-1633, June 2020.