| 研究生: |
郭士平 Gou, Shi-ping |
|---|---|
| 論文名稱: |
在低溫融鹽中電鍍鎳及鎳-鋅合金 Electrodeposition behavior of nickel and nickel-zinc alloys from the zinc chloride-1-ethyl-3-methylimidazolium chloride low temperature molten salt |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鎳 、鋅 、融鹽 、離子液體 、電鍍 |
| 外文關鍵詞: | electrodeposition, ionic liquid, molten salt, zinc, nickel |
| 相關次數: | 點閱:70 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文中利用鎢電極去探討鎳在zinc chloride-1-ethyl-3-methylimidazolium chloride(ZnCl2-EMIC)融鹽中的電化學行為。雖然氯化鎳(NiCl2)很容易溶解在純EMIC融鹽中,但金屬鎳[Ni(0)]卻很難在此鍍液中被還原出來。因此,我們再添加氯化鋅於鍍液中,有效幫助鎳的還原電位往正偏且成功讓金屬鎳還原出來。然而,金屬鎳的還原過程是需要過電位(overpotential)趨使才會發生。在定電位電鍍下,緊密且結實的鎳鍍層可以被鍍在鎢基材上且具有良好的附著力。經由X-射線粉末繞射(X-ray powder diffraction, XRD)鑑定,鎳鍍層具有特定晶形。透過鋅在鎳上的低電位沉積(underpotential deposition),可讓鍍層中鎳-鋅合金成分比呈現「非異常」(non-anomalous)現象,且經由X-射線粉末繞射與能量分散光譜(energy dispersive spectrometry)鑑定得知,依據不同電位電鍍所得的鎳-鋅鍍層成份比與晶相(phase)種類皆有所不同。藉由鋅在鎳上的低電位沉積的方法所得到鎳-鋅合金的鋅含量總是少於50 atomic%。
The electrodeposition of nickel and nickel-zinc alloys was investigated at polycrystalline tungsten electrode in the zinc chloride-1-ethyl-3-methylimidazolium chloride molten salt. Although nickel(II) chloride dissolved easily into the pure chloride-rich 1-ethyl-3-methylimidazolium chloride ionic melt, metallic nickel could not be obtained by electrochemical reduction of this solution. The addition of zinc chloride to this solution shifted the reduction of nickel(II) to more positive potential making the electrodeposition of nickel possible. The electrodeposition of nickel, however, requires an overpotential driven nucleation process. Dense and compact nickel deposits with good adherence could be prepared by controlling the deposition potential. X-ray powder diffraction measurements indicated the presence of crystalline nickel deposits. Non-anomalous electrodeposition of nickel-zinc alloys was achieved through the underpotential deposition of zinc on the deposited nickel at a potential more negative than that of the deposition of nickel. X-ray powder diffraction and energy-dispersive spectrometry measurements of the electrodeposits indicated that the composition and the phase types of the nickel-zinc alloys are dependent on the deposition potential. For the Ni-Zn alloy deposits prepared by underpotential deposition of Zn on Ni, the Zn content in the Ni-Zn was always less than 50 atom%.
[1] 綠色化學技術於工研院研發現況,1-11頁 (2007)
[2] K.R. Seddon, J. Chem. Tech. Biotechnol., 68, 351 (1997)
[3] P.Walden, Bull. Acad. Imper. Sci., 1800 (1914)
[4] R. Sheldon, Chem. Comm., 2399 (2001)
[5] E.I. Cooper, E.J.M. O’Sullivan, in“Proceedings of the eighth International Symposium of Molten Salts, Physical and High Temperature Materials Division Proceedings”, PV 92-16, R.J. Gale, G. Blomgren, H. Kojima, Editors, p.386, Electrochem. Soc., Pennington, NJ (1992)
[6] J.S. Wilekes, M.J. Zaworotko, J. Chem. Soc. Chem. Commun., 965 (1992)
[7] P.A.Z. Suarez, J.E.L. Dullius, S. Einloft, R.F. De Souza, J. Dupont, Polyhedron, 15, 1217 (1996)
[8] J. Fuller, R.T. Carlin, J. Chem. Soc., 229 (1994)
[9] P. Bonhôte, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem., 35, 1168 (1996)
[10] F. Endres, A.P. Abbott, D.R. MacFarlane, Electrodeposition from ionic liquids, p51, 67, 70, Wiley-VCH, Weinheim, Germany (2008)
[11] D. Crotty, Met. Finish., 94, 54 (1996)
[12] F.J. Fabri Miranda, O.E. Barcia, O.R. Mattos, R. Wiart, J. Electrochem. Soc., 144, 3441 (1997)
[13] G. Roventi, R. Fratesi, R.A. Delle Guardia, G. Barucca, J. Appl. Electrochem., 30, 173 (2000)
[14] Y. Ogata, H. Hori, M. Yasuda, F. Hine, J. Electrochem. Soc., 135, 76 (1988)
[15] S. Chouchane, A. Levesque, J. Douglade, R. Rehamnia, J.–P. Chopart, Surf. Coat. Technol., 201, 6212 (2007)
[16] M. Mortaga, Abou-Krisha, Appl. Surf. Sci., 252, 1035 (2005)
[17] A. Brenner, Electrodeposition of Alloys, Acadamic Press, New York and London (1963)
[18] H. Fukushima, T. Akiyama, K. Higashi, Metallurgy, 42, 242 (1988)
[19] K. Higashi, H. Fukushima, V. Takayushi, T. Akiyama, K. Matsudo, J. Electrochem. Soc., 128, 2091 (1981)
[20] F. Endres, ChemPhysChem, 3, 144 (2002)
[21] A.P. Abbott, K.J. McKenzie, Phys. Chem. Chem. Phys., 8, 4265 (2006)
[22] H. Ohno (ed.), Electrochemical Aspects of Ionic Liquids, John Wiley & Sons, New York (2005)
[23] L. Heerman, W. D’Olieslager, in: C.L. Hussey, D.S. Newman, G. Mamantov, Y. Ito (Eds.), Proceedings of Ninth International Symposium on Molten Salts, PV 94-13, The Electrochemical Society Proceedings Series, Pennington, NJ., p441 (1994)
[24] T.P. Moffat, J. Electrochem. Soc., 141, 3059 (2001)
[25] W.R. Pitner, C.L. Hussey, G.R. Stafford, J. Electrochem. Soc., 143, 130 (1996)
[26] C.A. Zell, W. Freyland, Chem. Phys. Lett., 337, 293 (2001)
[27] Y.-F. Lin, I.-W. Sun, Electrochim. Acta, 44, 2771 (1999)
[28] N. Koura, T. Endo, Y. Idemoto, J. Non-Cryst. Solids, 205, 650 (1996)
[29] P.-Y. Chen, M.-C. Lin, I.-W. Sun, J. Electrochem. Soc., 147, 3350 (2000)
[30] P. -Y. Chen, I.-W. Sun, Electrochim. Acta, 26, 1169 (2001)
[31] J.-F. Huang, I.-W. Sun, J. Electrochem. Soc., 151, C8 (2004)
[32] J.-F. Huang, I.-W. Sun, Electrochim. Acta, 49, 3251 (2004)
[33] J.-F. Huang, I.-W. Sun, Adv. Funct. Mater., 15, 989 (2005)
[34] F.-Y. Yeh, C.-C. Tai, J.-F. Huang, I.-W. Sun, J. Phys. Chem. B, 110, 5215 (2006)
[35] N. Koura, Y. Suzuki, Y. Idemoto, T. Kato, F. Matsumoto, Surf. Coat. Technol., 169, 120 (2003)
[36] J.S. Wilkes, J.A. Levisky, R.A. Wilson, C.L. Hussey, Inorg. Chem., 21, 1263 (1982)
[37] R.J. Gale, B. Gilbert, R.A. Osteryoung, Inorg. Chem., 18, 2723 (1979)
[38] T.M. Laher, C.L. Hussey, Inorg. Chem., 21, 4079 (1982)
[39] C.L. Hussey, in: G. Mamantov, A.I. Popov (Eds.), Chemistry of Nonaqueous Solutions: Current Progress, VCH, New York, p. 227 (1994)
[40] S.-I. Hsiu, J.-F. Huang, I.-W. Sun, C.-H. Yuan, J. Shiea, Electrochim. Acta, 47, 4367 (2002)
[41] B. Scharitfker, G. Hills, Electrochim. Acta, 28, 879 (1983)
[42] G.R. Stafford, C.L. Hussey, in: R. Alkire, D. Kolb, (Eds.), Advances in Electrochemical Science and Engineering, Wiley-VCH, Weinheim, Germany, p. 275 (2002)
[43] T. Fukuumizu, F. Kotani, A. Yoshida, A. Katagiri, J. Electrochem. Soc., 153,
C629 (2006)
[44] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and
Applications (2nd ed.), John Wiley & Sons, New York (2001)
[45] J. Robinson, R.A. Osteryoung, J. Am. Chem. Soc., 101, 323 (1979)
[46] J.R. Sanders, E.H. Ward, C.L. Hussey, J. Electrochem. Soc., 133, 325 (1986)
[47] R. Greef, R. Peat, L.M. Peter, D. Pletcher, J. Robinson, Intrumental Methods in Electrochemistry, John Wiley & Sons, New York (1985)
[48] D. Pletcher, A First Course in Electrode Processes, The Electrochemical Consultancy, England (1991)
[49] G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electroanal. Chem., 138, 225 (1982)
[50] G. Gunawardena, G. Hills, I. Montenegro, J. Electroanal. Chem., 138, 241 (1982)
[51] G. Gunawardena, G. Hills, I. Montenegro, B. Scharifker, J. Electroanal. Chem., 138, 255 (1982)
[52] G. Gunawardena, G. Hills, I. Montenegro, J. Electroanal. Chem., 184, 357 (1985)
[53] G. Gunawardena, G. Hills, I. Montenegro, J. Electroanal. Chem., 184, 371 (1985)
[54] A. Michev, S. Stoyanov, R. Kaischev, Thin Solid Films, 22, 255 (1974)
[55] A. Michev, E. Vassileva, J. Electroanal. Chem., 107, 337 (1980)
[56] G.J. Hills, D.J. Schiffrin, J.Thompson, Electrochim. Acta, 19, 657 (1974)
[57] I. Markov, Thin Solid Films, 35, 11 (1976)
[58] I. Markov , E. Stoycheva, Thin Solid Films, 35, 21 (1976)
[59] V. Tsakova, A. Milchev, J. Electroanal. Chem., 197, 359 (1986)
[60] A. Milchev, V. Tsakova, T. Chierchie, K. Jüttner, W.J. Lorenz, Electrochim. Acta, 31, 971 (1986)
[61] G. Trejo, A.F. Gil, I. González, J. Appl. Chem., 26, 1287 (1996)
[62] G. Trejo, R. Ortega B., Y. Meas V., P. Ozil, E. Chainet, B. Nguyen, J. Electrochem. Soc., 145. 4090 (1998)
[63] L. Legrand, A. Tranchant, R. Messina, J. Electrochem. Soc., 141, 378 (1994)
[64] C.L. Hussey, X. Xu, J. Electrochem. Soc., 138, 1886 (1991)
[65] X.-H. Xu, C.L. Hussey, J. Electrochem. Soc., 139, 1295 (1992)
[66] X.-H. Xu, C.L. Hussey, J. Electrochem. Soc., 139, 3103 (1992)
[67] X.-H. Xu, C.L. Hussey, J. Electrochem. Soc., 140, 618 (1993)
[68] X.-H. Xu, C.L. Hussey, J. Electrochem. Soc., 140, 1226 (1993)
[69] W.R. Pitner, C.L. Hussey, J. Electrochem. Soc., 144, 3095 (1997)
[70] J.S.-Y. Liu, I.-W. Sun, J. Electrochem. Soc., 144, 140 (1997)
[71] Y.-F. Lin, I.-W. Sun, J. Electrochem. Soc., 146, 1054 (1999)
[72] B. Scharifker, G. Hills, Electrochim. Acta., 28, 879 (1983)
[73] B.R. Scharifker, J. Mostany, J. Electroanal. Chem., 177, 13 (1984)
[74] J. Mostany, J. Mozota, B.R. Scharifker, J. Electroanal. Chem., 177, 25 (1984)
[75] M. P.-Pardavé, M.T. Ramírez, I. González, A. Serruya, B.R. Scharifker, J. Electrochem. Soc., 143, 1551 (1996)
[76] J.R. Sanders, in “An Investigations of Transport Properties and Ion Association in Room Temperature Haloaluminate Molten Salt”, Ph.D. Dissertation, The University of Mississippi (1987)
[77] R.C. Weast, “CRC Handbook of Chemistry and Physics”, CRC Press, Inc., Boca Raton, Florida (1988)
[78] B.D. Cullity, S.R. Stock, “Elements of X-Ray Diffraction”, 3rd ed.,
Prentice-Hall, Inc. (2001)
[79] J. Erlebacher, K. Sieradzki, Scripta Materialia, 49, 991 (2003)
[80] J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, K. Sieradzki, Nature, 410, 450 (2001)
[81] L. Sun, C.L. Chien, P.C. Searson, Chem. Mater., 16, 3125 (2004)
[82] J. Erlebacher, J. Electrochem. Soc., 151, C164 (2004)
[83] K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, J. Erlebacher, J. Electrochem. Soc., 149, B70 (2002)
[84] X.L. Nie, Z.W. Lan, Z. Yu, K. Sun, L.L. Zhong, Transactions of nonferrous Metals Society of China, 17, S854 (2007)
[85] M. Usakova, J. Lukac, R. Dosoudil, V. Jancarik, A. Gruskova, E. Usak, J. Slama, J. Subrt, J. Mater. Sci.-Mater. Electro., 18, 1183 (2007)
[86] C. Calle, V.H. Calle, F. Cuellar, A. Cortes, D. Arias, W. Lopera, P. Prieto, O. Guzman, G.A. Mendoza, Physica-B-Condensed Matter, 384, 103 (2006)
[87] M. Sorescu, L. diamandescu, R. Swaminathan, M.E. Mchenry, M. Deder, J. Appl. Phys., 97, 10G105 (2005)
[88] R. Swaminathan, M.E. Mchenry, P. Poddar, H. Srikanth, J. Appl. Phys., 97, 10G104 (2005)