簡易檢索 / 詳目顯示

研究生: 林宗仁
Lin, Tsung-Jen
論文名稱: 永磁/同步發電機與太陽能發電系統之整合研究
A Study on Integration of PM/Synchronous Generators and PV System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 117
中文關鍵詞: 換流蓄電池整流永磁機同步機
外文關鍵詞: battery, converter, PMG, SG, inverter
相關次數: 點閱:51下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討太陽能與風力發電系統之整合研究,其中風力用發電機分別使用永磁發電機與同步發電機兩種不同發電機型式。為了改善兩種不同發電機在隨機風速下所產生之不同電壓與頻率特性,以及在不同負載下之負載效應,本文提出利用整流模組及蓄電池來同時完成風力及太陽能的儲能並改善風力發電機之負載效應。此蓄電池電能再經由換流模組來同時得到固定頻率與電壓之輸出,除可供應獨立負載外也可與市電系統並聯。
    本論文在三相平衡系統下採用交直軸等效電路模型,分別建立永磁發電機、同步發電機、太陽電池、整流器、蓄電池與換流器之模型,分別推導其數學模式來完成整體動態方程式,並利用特徵值法來求出系統之動態穩定度。硬體架構則採用實驗室之500 W永磁發電機組、300 W同步發電機,經整流模組後與1.5 kW太陽電池模組及24 V蓄電池模組合併,再經由容量4.5 kW換流模組供應負載。由模擬與實測結果互相比較,以驗證本論文所提系統模型之可用性及正確性。

    This thesis presents the results of a study on integration of a permanent magnet generator (PMG)/a synchronous generator (SG) and a PV System. A PMG and a SG are respectively utilized as a wind generator. To improve variable frequency, variable voltage, and loading effects of both generators under random wind speeds, a rectifier module and a battery system are employed to combine both PV and wind systems. The stored energy in the battery system is converted into constant voltage and constant frequency by means of an inverter module to supply isolated loads or connect to a utility grid.
    A d-q axis equivalent-circuit machine model is employed to establish the PMG, SG, rectifier, inverter, PV, and battery models in order to derive the complete dynamic equations of the studied system under three-phase balanced loading conditions. The derived system model is also employed to obtain system eigenvalues to determine dynamic stability. Experimental results obtained from a laboratory 500 W PMG, a 300 W SG, a 1.5 kW PV system, a 24 V battery system, and a 4.5 kW inverter module are compared with the simulated results to validate feasibility of the proposed models.

    中文摘要 I 英文摘要 II 目錄 III 表目錄 VI 圖目錄 VIII 符號表 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 相關文獻回顧 3 1.3 本論文之大綱 4 第二章 系統模型之建立 6 2.1 永磁發電機模型推導與建立 6 2.2 同步發電機模型推導與建立 9 2.3 整流器模型推導與建立 12 2.4 蓄電池模型推導與建立 15 2.5 換流器模型推導與建立 16 2.6 光伏電池模型推導與建立 19 第三章 風力永磁發電系統之穩定度分析 20 3.1 永磁風力發電機直接供應負載之特性分析 20 3.2 永磁風力發電機經整流器-蓄電池-換流器供應負載之特性分析33 3.3 永磁風力發電機經整流器-蓄電池-換流器並聯市電之特性分析43 第四章 同步發電機系統之穩定度分析 49 4.1 同步發電機直接供應負載之特性分析 49 4.2 同步發電機經整流器-蓄電池-換流器供應負載之特性分析 58 4.3 同步發電機經整流器-蓄電池-換流器並聯市電之特性分析 66 第五章 混合型風力-太陽能發電系統之穩定度分析 72 5.1 太陽能發電系統之照度與開路電壓 73 5.2 混合型永磁風力發電機-太陽能發電系統經整流器-蓄電池-換流器後供應獨立負載之特性分析器 74 5.3 混合型永磁風力發電機-太陽能發電系統經整流器-蓄電池-換流器後並聯市電之特性分析 81 5.4 混合型同步風力發電機-太陽能發電系統經整流器-蓄電池-換流器供應獨立負載之特性分析 85 5.5 混合型同步風力發電機-太陽能發電系統經整流器-蓄電池-換流器後並聯市電之特性分析 91 5.6 混合型永磁風力發電機於隨機風速及照度下之特性分析 96 第六章 結論 100 6.1 結論 100 6.2 未來研究方向 103 參考文獻 104 附錄 107 作者自述 117

    [1] 黃文良、黃昭睿,能源應用,東華書局,民國八十五年二月。
    [2] 楊金石,“風力發電之監控設備對系統特性的影響”,台電工程月刊,第516期,第21-31頁,民國八十年八月。
    [3] 王醴、鄧瑞永、鄭健閔,“獨立感應發電機於不平衡負載之動態研究”,中華民國第十九屆電力工程研討會,第264-268頁,民國八十七年。
    [4] 翁萬德,“台灣地區風力時序長程機率模型之建立及風力發電可行性之分析”,行政院國家科學委員會八十八年度電力科技產業學術合作研究計畫成果報告,民國八十八年七月。
    [5] 陳野正仁,“日本太陽光發電之現況”,光電與能源及環保專題報導之三,第68期,第15-18頁,民國八十六年十月。
    [6] S. A. Papathanassiou and M. P. Papadopoulos, “Dynamic behavior of variable speed wind turbine under stochastic wind,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, 1999, pp. 1617-1623.
    [7] R. Cardenas, G. M. Asher, W. F. Ray, and R. Pena, “Power limitation variable turbines with fixed pitch angle,” IEE Opportunities and Advances in International Electric Power Generation Conf. Publ. no. 419, 1996, pp. 44-48.
    [8] G. A. Smith, P. A. Onions, and D. G. Infield, “Predicting islanding operation of grid connected PV inverters,” IEE Proceedings, Electrical Power Applications, vol. 147, no. 1, 2000, pp. 1-6.
    [9] W. D. Kellogg, M. H. Nehrir, G. Venkataramanan, and V. Gerez, “Generation unit sizing and cost analysis for stand-alone wind, photovoltaic and hybrid wind/PV system,” IEEE Transactions on Energy Conversion, vol. 13, no. 1, 1998, pp. 70-75.
    [10] B S. Borowy and Z. M. Salameh, “Methodology for optimally sizing the combination of a battery bank and PV array in a Wind/PV hybrid system,” IEEE Transactions on Energy Conversion, vol. 11, no. 2, 1996, pp. 367-375.
    [11] F. Crescimbini, F. Carricchi, L. Solero, B. J. Chalmers, E. Spooner, and W. Wei, “Electrical equipment for a combined wind/PV isolated generating system,” IEEE Transactions on Energy Conversion, vol. 8, no. 3, 1996, pp. 59-64.
    [12] L. Soderlund, L. Eriksson, J. T. Salonen, J. Vihriala, and R. H. Perala, “A permanent-magnet generator for wind power applications,” IEEE Transactions on Energy Conversion, vol. 32, no. 1, 1996, pp. 2389-2392.
    [13] A. I. Megahed and O. P. Malik, “Simulation of internal faults in synchronous generators,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, 1999, pp. 1306-1311.
    [14] E. Spooner, A. C. Williamson and G. Catto, “Modular design of permanent-magnet generators for wind turbines,” IEE Proceedings, Part C, vol. 143, no. 5, 1996, pp. 388-395.
    [15] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill Book Company, 1987.
    [16] L. Wang, “A comparative study of damping schemes on damping generator oscillations,” IEEE Transactions on Power Systems, vol. 8, no. 2, 1993, pp. 613-619.
    [17] Y. Y. Hsu and L. Wang, “Damping of a parallel ac-dc power system using PID power system stabilizers and rectifier current regulators, ” IEEE Transactions on Energy Conversion, vol. 3, no. 3, 1988, pp. 540-549.
    [18] Y. Y. Hsu and L. Wang, “Modal control design of an HV DC system for the damping of subsynchronous oscillations,” IEE Proceedings, Part C, vol. 136, no. 2, 1989, pp. 76-86.
    [19] B. S. Borowy and Z. M. Salameh, “Optimum photovoltaic array size for a hybrid wind/PV system,” IEEE/PES 1994 Winter Meeting, Paper 94 WM 120-6, 1994.
    [20] R. D. Middlebrook and S. Cuk, “A general unified approach to modelling switching-converter power stages,” IEEE Power Electronics Specialists Conference, 1976, pp. 18-34.

    無法下載圖示 校內:2062-07-22公開
    校外:2062-07-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE