| 研究生: |
江銘翰 Jiang, Ming-Han |
|---|---|
| 論文名稱: |
應用於脫泡攪拌機之無鐵芯軸向磁通式永磁發電機系統 Application of a core-less axial flux permanent magnet generator system in a degassing mixer |
| 指導教授: |
戴政祺
Tai, Cheng-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 電磁感應 、軸向磁通式永磁發電機 、脫泡攪拌機 |
| 外文關鍵詞: | Electromagnetic induction, axial flux type permanent magnet generator, defoaming mixer |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主旨在將電磁感應發電技術應用於行星式脫泡攪拌機系統當中,藉此解決傳統脫泡攪拌機中依賴齒輪與皮帶傳動、結構複雜且易產生粉塵污染的問題,提出一種基於無鐵芯軸向磁通式永磁發電機(Coreless AF-PMG)的電磁感應無線傳能解決方案,使整體機構簡化同時達到縮小體積與重量等優點。傳統脫泡攪拌機多以葉片或單軸離心的方式進行,若需去除混和物中的氣泡需額外借助真空機才能達成,且常受限於混和物的物理性質導致效果不如預期,也因葉片或是皮帶等機械結構,存在設備清潔不易及攪拌物容易受到汙染等風險。新式脫泡攪拌機則是透過公轉與自轉兩種方向的結合,除可更有效均勻混和攪拌物質外,也解決了傳統脫泡攪拌機遇到的困難,同時達成脫泡的效果。本論文提出一套整合無鐵芯軸向磁通式永磁發電機與行星式脫泡攪拌機系統,其原理是藉由公轉馬達帶動轉子上的線圈繞組旋轉,切割永久磁鐵產生的磁場,進而產生感應電動勢匯入後級電路,供給二次側使用。為驗證系統可行性,本文先透過數學模擬軟體進行數值模擬,並比較轉子與定子間的氣隙間距、轉速以及各負載下波形變化,結果顯示模擬值與實測值維持誤差率於10 %~20 %,以此佐證本系統與設計過程的可行性。
The main purpose of this study is to apply the electromagnetic induction power generation technology to the planetary defoamer system, to solve the problem of the traditional defoamer which relies on gears and belts for transmission, and the structure is complicated and prone to dust pollution, and to put forward an electromagnetic induction wireless power transmission solution based on the coreless axial flux permanent magnet generator (Coreless AF-PMG), which can simplify the overall organization and achieve the advantages of reducing the size and weight at the same time. The solution is to streamline the whole organization and reduce the size and weight of the mixer. Traditional defoaming mixers are mostly operated by blades or single-shaft centrifugation. If air bubbles in the mixture need to be removed, it requires additional vacuum to do so, and the effect is often not as effective as expected due to the physical properties of the mixture, and also due to the mechanical structure of the blades or belts, there are risks that the equipment cannot be cleaned easily, and that the mixture will be easily contaminated. The new de-foaming mixer combines the two directions of rotation and auto-rotation to achieve the effect of de-foaming in addition to more effective homogenization of mixing and stirring materials, and also solves the difficulties encountered by the traditional defoaming mixer. This paper proposes an integrated coreless axial flux type permanent magnet generator and planetary defoamer system. The principle of this system is that the coil winding on the rotor is driven by the rotating motor to cut the magnetic field generated by the permanent magnets, which in turn generates the induced electromotive force (EMF) to be fed into the back-end circuits for the use of the secondary side. To verify the feasibility of the system, this paper firstly simulates the system through simulation software, and compares the air gap pitch between the rotor and stator, the rotational speed, and the changes of waveforms under various loads, and finally compares the numerical simulation with the output results of the actual system mechanism, to support the feasibility of the system and the design process.
[1] M. Bohner and J. Lemaitre, “Calcium phosphate cements: review of mechanical properties and their in vivo performance,” Acta Biomaterialia, vol. 5, no. 3, pp. 849–852, Apr. 2009.
[2] S. Eswar, L. Jaiganesh, N. Hariprasad, M. Mohamedimthiyas, and A. Gopikrishnan, “Automatic Liquid Mixing and Filling Using PLC,” 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, pp. 1-6, 2018.
[3] K. Li, F. Wang, D. He, and S. Zhang, “A knowledge based intelligent control method for dehydration and mixing process,” 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, pp. 477-482, 2017.
[4] P. Zhang, Q. Shao and S. Cheng, “The relationship between dielectric properties and the preparation method of nano-SiO2/epoxy composite,” 2015 IEEE 11th International Conference on the Properties and Applications of Dielectric Materials (ICPADM), Sydney, NSW, Australia, 2015
[5] 郭啟全、黃川銘、陳威樺,「兼具低成本與高效能之矽膠真空脫泡系統研製與應用」,智慧自動化產業期刊,頁36-46,2015年12月。
[6] 戴政祺、林信昌、戴勵揚、戴勵嘉,「電磁感應充電之脫泡攪拌機」,台灣發明專利號碼:M609699,2021。
[7] C. C. Tai, H. C. Lin and C. H. Lu,「MIXER WITH WIRELESS POWER TRANSMISSION」,美國發明專利號碼:US 11130102,2021。
[8] 戴政祺、林信昌、洪家銘,「具無線充電的脫泡攪拌機」,台灣發明專利號碼:I648095,2019。
[9] 戴政祺、林信昌、洪家銘,「具無線充電的脫泡攪拌機」,日本發明專利號碼:3221546,2019。
[10] 新基股份有限公司,「攪拌脫泡裝置所使用的容器及攪拌脫泡裝置」,台灣發明專利號碼:I499446,2010。
[11] 日揚科技股份有限公司,「真空離心脫泡機改良」,台灣發明專利號碼:M395000,2010。
[12] 林信昌,「具無線電能傳輸功能之脫泡攪拌機」,國立成功大學電機工程學系碩士論文,2020。
[13] 陳品綸,「電磁感應式脫泡攪拌機雛型系統研製」,國立成功大學電機工程學系碩士論文,2022。
[14] 張偉治,「電磁感應式無線傳能脫泡攪拌機系統」,國立成功大學電機工程學系碩士論文,2024。
[15] 蕭定承,「應用於衛星姿態控制之反應輪無槽式永磁同步馬達設計」,國立成功大學電機工程學系碩士論文,2019。
[16] K. Sitapati and R. Krishnan, “Performance Comparisons of Radial and Axial Field, Permanent-Magnet, Brushless Machines,” IEEE Transactions on Industry Applications, vol. 37, no. 5, pp. 1219-1226, Sept.-Oct. 2001.
[17] T. Srisiriwanna and M. Konghirun, “A study of cogging torque reduction methods in brushless dc motor,” 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, pp. 1-4, 2012.
[18] D. Wu and Z. Q. Zhu, “Design Tradeoff Between Cogging Torque and Torque Ripple in Fractional Slot Surface-Mounted Permanent Magnet Machines,” IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, Nov. 2015.
[19] L. Dosiek and P. Pillay, “Cogging Torque Reduction in Permanent Magnet Machines,” IEEE Transactions on Industry Applications, vol. 43, no. 6, pp. 1565-1571, Nov.-Dec. 2007.
[20] C. Brad, I. Vadan, and I. Berinde, “Design And Analysis Of An Axial Magnetic Flux Wind Generator,” 2017 International Conference on Modern Power Systems (MPS), Cluj-Napoca, Romania, pp. 1-7, 2017.
[21] Y. Sun, F. Liu and K. Zhang, “Equivalent Impedance Characteristic Analysis for the Three-phase Diode-bridge Rectifier with DC Capacitance,” 2015 IEEE 2nd International Future Energy Electronics Conference (IFEEC), Taipei, pp. 1-6, 2015.
[22] J. Y. Lee, D. H. Koo, S. R. Moon, and C. K. Han, “Design of an Axial Flux Permanent Magnet Generator for a Portable Hand Crank Generating System,” IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 2977-2980, Nov. 2012.
[23] Nurma Sari1, Gatut Yudoyono, Ali Yunus Rohedi, and Yono Hadi Pramono, “Design and fabrication of rotor lateral shifting in the axial-flux permanent-magnet generator,” International Journal of Electrical and Computer Engineering (IJECE), Vol. 12, No. 1, pp. 141~149, February 2022.
[24] A. A. Yusuf, M. Irfan, and M. F. Razzaq, “A Design of Coreless Permanent Magnet Axial Flux Generator for Low Speed Wind Turbine,” 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Malang, Indonesia, pp. 637-641, 2018.
[25] 泰樂科技有限公司,磁鐵/磁石基本特性,Available: http://www.teslar-tech.com.tw
[26] 右任磁電有限公司,磁鐵產品,Available: https://uz-magnet.com.tw
[27] 好磁多有限公司,產品介紹,Available: https://www.gmm-magnet.com.tw
校內:2030-08-15公開