簡易檢索 / 詳目顯示

研究生: 裘友堯
Chiu, You-Yao
論文名稱: 適用於資料取樣且具多輸入多輸出子系統的非線性大尺度系統其觀測器型分散式自適應軌跡追蹤器之數位再設計: 進化演算法則
Digital Redesign of the Observer-Based Decentralized Adaptive Tracker for Sampled-Data Nonlinear Large-Scale System with MIMO Subsystems: Evolutionary Programming Approach
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 61
中文關鍵詞: 分散式自適應性參考模型觀測器進化論演算法軌跡追蹤器數位再設計
外文關鍵詞: Digital redesign, evolutionary programming, observer, reference model, decentralized adaptive control, tracker
相關次數: 點閱:154下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出針對資料取樣的非線性大尺度系統包含數個多輸入多輸出非線性子系統以觀測器為基底的分散式自適應性軌跡追蹤器之數位再設計,並使用進化論演算法改進不好的系統條件的追蹤效能。基於已知的資料取樣的非線性大尺度系統包含數個多輸入多輸出非線性子系統,利用兩階段的分散式設計法設計一個解耦的參考模型,模型的輸出響應能夠追蹤到任何軌跡,即使軌跡在一開始是無法用數學函數表是或者在一個極大範圍內是沒有邊界限制。之後,另一個經過數位再設計的分散式自適應軌跡追蹤器被提出,此追蹤器能使一個被數位控制的資料取樣大尺度系統能夠具有經過良好設計的閉迴路參考模型一樣的解耦特性。因此,數位控制的資料取樣大尺度系統的輸出能夠追蹤設計的軌跡。當系統的狀態是不可量測時,一個以觀測器為基底的分散式自適應軌跡追蹤器被提出。此外,進化論演算法被提出用來針對不良條件的系統改進其狀態估測和追蹤效能。最後使用例子來證明本論文所提出的理論是有效的。

    In this thesis, a novel digital redesign of the observer-based decentralized adaptive tracker for sampled-data nonlinear large-scale system consisting of nonlinear multi-input multi-output subsystems, using evolutionary programming to further improve the tracking performance for ill-condition systems, is proposed. Based on the given sampled-data large scale nonlinear system consisting of nonlinear multi-input multi-output interconnected subsystems, the decentralized two-stage design is proposed to construct a decoupled well-design reference model, so that the output response of the well-design reference model will well track any trajectory specified at sampling instant, which may not be presented by the analytic reference model initially, and it may not be bounded in a quite large range. Then, the other digital-redesign decentralized adaptive tracker is proposed, so that states of the digitally controlled sampled-data large-scale system closely match the ones of the well-design reference model with the closed-loop decoupling property. As a result, it yields the output of the digitally controlled sampled-data large scale system tracks well the trajectory, which may not be presented by the analytic reference model initially. When the state of the system is not measurable, an observer-based decentralized adaptive tracker is proposed. Besides, the evolutionary programming (EP) is applied to tune the observer gain to further improve the state estimation and tracking performance for the ill-conditional system. Finally, illustrative examples are given to demonstrate the effectiveness of the proposed methodology.

    中文摘要 Ⅰ Abstract Ⅱ List of Contents Ⅳ List of Figures V Chapter 1. Introduction 1-1 2. A novel decentralized adaptive tracker for the analogue nonlinear large-scale system with MIMO interconnected subsystems 2-1 2.1 The decentralized adaptive control problem 2-2 2.2 Optimal linearization of nonlinear systems 2-5 2.3 Decentralized adaptive control 2-8 3. A novel observer-based decentralized adaptive tracker for the sample-data nonlinear large-scale system with MIMO interconnected subsystems 3-1 3.1 Linear quadratic analog tracker design 3-2 3.2 Digital redesign of the linear quadratic analog tracker 3-2 3.3 Observer-based linear quadratic analog tracker design 3-4 3.4 Digital redesign of the observer-based linear quadratic analog tracker 3-6 3.5 Digital redesign of decentralized adaptive control 3-9 4. Adaptive observer/tracker: an evolutionary programming approach 4-1 4.1 Quasi-random sequences (QRS) 4-2 4.2 Tuning gain of the digital redesigned adaptive tracker with observer 4-3 4.2.1 Individual of population 4-3 4.2.2 Objective function 4-3 4.2.3. Fitness function 4-4 4.2.4 Probability function 4-5 4.2.5 Mutation 4-5 4.2.6 Selection 4-6 4.2.7 EP termination condition 4-6 5. An Illustrative Example 5-1 6. Conclusion 6-1 References R-1

    [1] H. S. Wu, “Decentralized robust control for a class of large-scale interconnected systems with uncertainties,” International Journal of System Science, vol. 20, no. 12, pp. 2597–2608, 1989.
    [2] M. Jamshidi, LargeScale System: Modeling and Control, New York: Elserier Science Publishing, 1983.
    [3] E. J. Davison, “The robust decentralized control of servomechanism problem for composite system with input-output interconnection,” IEEE Transactions on Automatic Control, AC 24, no. 2, pp 325–327, 1979.
    [4] P. A. Ioannou and J. Sun, Robust Adaptive Control, New Jersey: Prentice Hall, 1996.
    [5] D. T. Gavel and D. D. Seljuk, “Decentralized adaptive control: structural conditions for stability,” IEEE Transactions on Automatic Control, AC 34, pp. 413–426, 1989.
    [6] L. Shi and S. K. Singh, “Decentralized adaptive controller design of large-scale systems with higher order interconnections,” IEEE Transactions on Automatic Control, AC 37, pp. 1106–1118, 1992.
    [7] R. Ortega and A. Herrera, “A solution to the decentralized adaptive stabilization problem,” Systems and Control Letters, vol. 20, pp. 299–306, 1993.
    [8] A. Datta, “Performance improvement in decentralized adaptive control: A modified model reference scheme,” IEEE Transactions on Automatic Control, vol. 38, no. 11, pp. 1717–1722, 1993.
    [9] Y. H. Chen, G. Leitmann and Z. K. Xiong, “Robust control design for interconnected systems with time-varying uncertainties,” International Journal of Control, vol. 54,
    pp. 1119–1124, 1991.
    [10] C, Wen. , “Direct decentralized adaptive control of interconnected systems having arbitrary subsystem relative degrees,” Proceedings of the 33rd conference on Decision and Control, Lake Buena Vista, FL, pp. 1187–1192, December 1994.
    [11] C. Wen, “Indirect robust totally decentralized adaptive control of continuous-time interconnected systems,” IEEE Transactions on Automatic Control, AC 38, no. 6, pp. 1122–1126, 1995.
    [12] K. Ikeda and S. Shin, “Fault tolerant decentralized control systems using backstepping,” in Proceedings of the 33rd conference on Decision and Control, New Orleans, LA, pp. 2340–2345, December 1995.
    [13] P. R. Pagilla, “Robust decentralized control of large-scale interconnected systems: General interconnections,” In Proceedings of American Control Conference, San Diego, CA, pp. 4527–4531, June 1999.
    [14] O. Huseyin, M. E. Sezer and D. D. Siljak, “Robust decentralized control using output feedback,” IEEE Proceedings, vol. 129, pp. 310–314, 1982.
    [15] A. Datta and P. A. Ioannou, “Decentralized indirect adaptive control of interconnected systems,” International Journal of Adaptive Control and Signal Processing, vol. 5, pp. 259–281, 1991.
    [16] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, Upper Saddle River, New Jersey: Prentice-Hall, 1989.
    [17] K. S. Narendra and N. O. Oleng’, “Exact output tracking in decentralized adaptive control systems,” IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 390–395, 2002.
    [18] G. C. Goodwin and K. S. Sin, Adaptive filtering prediction and control, Upper Saddle River, New Jersey: Prentice-Hall, 1984
    [19] Y. Zhu and P. R. Pagilla ”Decentralized output feedback control of a class of larage-scale interconnected systems”, IMA Journal of Mathematical Control and Information, School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, USA, May 2007.
    [20] M. H. Lin, J. S. H. Tsai, C.W. Chen, S. M. Guo and C. A. Chu, “Digital redesign of the decentralized adaptive tracker for linear large-scale systems,” International Journal of Systems Science (accepted in April 2009).
    [21] K. S. Narendra and N. O. Oleng “Decentralized adaptive control”, Proceedings of the American Control Conference, Anchorage, AK, May 2002.
    [22] S. M. Guo, L. S. Shieh, G. Chen and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems – I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557–1570, 2000.
    [23] Y. P. Chang, J. S. H. Tsai and L. S. Shieh, “Optimal digital redesign of hybrid cascaded input-delay systems under state and control constraints,” IEEE Transaction on Circuits and Systems, vol. 49, no. 9, pp. 1382–1392, 2002.
    [24] J. H. Halton, “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische Mathematik, vol. 2, pp. 84-90, 1960.
    [25] J. C. Van, “Verteilungsfunktionen,” Pro. Kon Akad. Wet., Amsterdam, vol. 38, pp. A13-A21, pp. 1058-1066, 1935.

    下載圖示 校內:2010-06-30公開
    校外:2012-06-30公開
    QR CODE