| 研究生: |
陳皓威 Chen, Hao-Wei |
|---|---|
| 論文名稱: |
鋇金屬硫氧化物的合成與光學性質 Syntheses and Optical Properties of a Barium Oxychalcogenide |
| 指導教授: |
許桂芳
Hsu, Kuei-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 硫氧化物 、螢光性質 、寬能隙 、非線性光學材料 、高穿透度 |
| 外文關鍵詞: | oxychalcogenide, photoluminescence, wide band gap, nonlinear optical materials, high transparence |
| 相關次數: | 點閱:134 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用溴化鉀作為助熔劑,成功地於高溫爐合成出具有非中心對稱骨架結構的鋇金屬硫氧化物,此化合物的能隙高達3.75 eV,並具有良好的光致放光行為。其結構骨架是由GaO4 與GaSO3 四面體以共用角方式相互鍵結形成。沿c 軸方向延伸構成三維的六角柱結構,團簇結構的排列朝著特定的方向。
鋇金屬硫氧化物的通光範圍為2.5 μm – 12.5 μm,在紅外光區有良好的穿透度,加上具備寬能隙的優勢,意味著我們化合物有作為紅外非線性光學材料的潛力。不僅如此,在螢光性質部分,室溫情況下以激發光波長325 nm 照射放出黃綠光,放射光波長落在542 nm,且具有非常高強度的放光特性。
A barium oxychalcogenide with noncentrosymmetric framework was synthesized using KBr flux in the high-temperature furnace. This compound has a wide band gap of 3.75 eV and exhibits good photoluminescence (PL) behavior. It is constructed by GaO4 and GaSO3 tetrahedral via corner-sharing. A three-dimensional hexagonal column along c axis and all the cluster arrange in a specific direction.
Both the optical transparence for the sample begin from infrared region 2.5–12.5 μm and the advantage of the wide band gap mean that this compound has the potential application as nonlinear optical (NLO) materials. In addition, the PL property of it is investigated at room temperature exhibits a strong emission band at 542 nm under excitation wavelength of 325 nm.
(1) Boyd, G.; Buehler, E.; Storz, F.; Wernick, J. IEEE Journal of Quantum Electronics 1972, 8, 419.
(2) Chen, C.-t.; Liu, G.-z. Annual Review of Materials Science 1986, 16, 203.
(3) Byer, R. L. IEEE Journal of Selected Topics in Quantum Electronics 2000, 6, 911.
(4) Tang, C. L.; Bosenberg, W. R.; Ukachi, T.; Lane, R. J.; Cheng, L. K. Proceedings of the IEEE 1992, 80, 365.
(5) Driel, H. M. V. IEEE Circuits and Devices Magazine 1994, 10, 30.
(6) Aytur, O.; Dikmelik, Y. IEEE Journal of Quantum Electronics 1998, 34, 447.
(7) Kang, L.; Ramo, D. M.; Lin, Z.; Bristowe, P. D.; Qin, J.; Chen, C. Journal of Materials Chemistry C 2013, 1, 7363.
(8) Halasyamani, P. S.; Poeppelmeier, K. R. Chemistry of Materials 1998, 10, 2753.
(9) Auston, D. H.; Ballman, A. A.; Bhattacharya, P.; Bjorklund, G. J.; Bowden, C.; Boyd, R. W.; Brody, P. S.; Burnham, R.; Byer, R. L.; Carter, G.; Chemla, D.; Dagenais, M.; Dohler, G.; Efron, U.; Eimerl, D.; Feigelson, R. S.; Feinberg, J.; Feldman, B. J.; Garito, A. F.; Garmire, E. M.; Gibbs, H. M.; Glass, A. M.; Goldberg, L. S.; Gunshor, R. L.; Gustafson, T. K.; Hellwarth, R. W.; Kaplan, A. E.; Kelley, P. L.; Leonberger, F. J.; Lytel, R. S.; Majerfeld, A.; Menyuk, N.; Meredith, G. R.; Neurgaonkar, R. R.; Peyghambarian, N. G.; Prasad, P.; Rakuljic, G.; Shen, Y. R.; Smith, P. W.; Stamatoff, J.; Stegeman, G. I.; Stillman, G.; Tang, C. L.; Temkin, H.; Thakur, M.; Valley, G. C.; Wolff, P. A.; Woods, C. Appl. Opt. 1987, 26, 211.
(10) Abrahams, S. C.; Bernstein, J. L. The Journal of Chemical Physics 1973, 59, 1625.
(11) Shoji, I.; Kondo, T.; Kitamoto, A.; Shirane, M.; Ito, R. J. Opt. Soc. Am. B 1997, 14, 2268.
(12) Boyd, G.; Kasper, H.; McFee, J. IEEE Journal of Quantum Electronics 1971, 7, 563.
(13) Akiko Harasaki; Kiyoshi Kato Japanese Journal of Applied Physics 1997, 36, 700.
(14) Byer, R. L.; Choy, M. M.; Herbst, R. L.; Chemla, D. S.; Feigelson, R. S. Applied Physics Letters 1974, 24, 65.
(15) Das, S.; Bhar, G. C.; Gangopadhyay, S.; Ghosh, C. Appl. Opt. 2003, 42, 4335.
(16) Van Mieghem, P. Reviews of Modern Physics 1992, 64, 755.
(17) Kostyukova, N. Y.; Boyko, A. A.; Badikov, V.; Badikov, D.; Shevyrdyaeva, G.; Panyutin, V.; Marchev, G. M.; Kolker, D. B.; Petrov, V. Opt. Lett. 2016, 41, 3667.
(18) Tyazhev, A.; Kolker, D.; Marchev, G.; Badikov, V.; Badikov, D.; Shevyrdyaeva, G.; Panyutin, V.; Petrov, V. Opt. Lett. 2012, 37, 4146.
(19) Badikov, V.; Badikov, D.; Shevyrdyaeva, G.; Tyazhev, A.; Marchev, G.; Panyutin, V.; Noack, F.; Petrov, V.; Kwasniewski, A. Opt. Mater. Express 2011, 1, 316.
(20) Kuo, S.-M.; Chang, Y.-M.; Chung, I.; Jang, J.-I.; Her, B.-H.; Yang, S.-H.; Ketterson, J. B.; Kanatzidis, M. G.; Hsu, K.-F. Chemistry of Materials 2013, 25, 2427.
(21) Yin, W.; Feng, K.; Mei, D.; Yao, J.; Fu, P.; Wu, Y. Dalton Trans 2012, 41, 2272.
(22) Liu, B.-W.; Zeng, H.-Y.; Zhang, M.-J.; Fan, Y.-H.; Guo, G.-C.; Huang, J.-S.; Dong, Z.-C. Inorganic chemistry 2015, 54, 976.
(23) Isaenko, L. I.; Yelisseyev, A. P.; Lobanov, S. I.; Krinitsin, P. G.; Molokeev, M. S. Optical Materials 2015, 47, 413.
(24) Lekse, J. W.; Moreau, M. A.; McNerny, K. L.; Yeon, J.; Halasyamani, P. S.; Aitken, J. A. Inorganic chemistry 2009, 48, 7516.
(25) Lin, H.; Zhou, L.-J.; Chen, L. Chem. Mater. 2012, 24, 3406.
(26) Calvagna, F.; Zhang, J.; Li, S.; Zheng, C. Chemistry of Materials 2001, 13, 304.
(27) Smura, C. F.; Parker, D. R.; Zbiri, M.; Johnson, M. R.; Gál, Z. A.; Clarke, S. J. Journal of the American Chemical Society 2011, 133, 2691.
(28) Zhou, T.; Wang, Y.; Jin, S.; Li, D.; Lai, X.; Ying, T.; Zhang, H.; Shen, S.; Wang, W.; Chen, X. Inorganic chemistry 2014, 53, 4154.
(29) Sambrook, T.; Smura, C. F.; Clarke, S. J.; Ok, K. M.; Halasyamani, P. S. Inorganic chemistry 2007, 46, 2571.
(30) Xia, Y.; Huang, F.; Wang, W.; Wang, Y.; Yuan, K.; Liu, M.; Shi, J. Optical Materials 2008, 31, 311.
(31) Broadley, S.; Gál, Z. A.; Corà, F.; Smura, C. F.; Clarke, S. J. Inorganic chemistry 2005, 44, 9092.
(32) Li, L.; Wong, K.-L.; Li, P.; Peng, M. Journal of Materials Chemistry C 2016, 4, 8166.
(33) Xia, Y.; Huang, F.; Wang, W.; Wang, A.; Shi, J. Solid State Sciences 2007, 9, 1074.
(34) Tandon, S. P.; Gupta, J. P. physica status solidi (b) 1970, 38, 363.
(35) Boyd, G. D.; Ashkin, A.; Dziedzic, J. M.; Kleinman, D. A. Physical Review 1965, 137, A1305.
(36) Kulyuk, L. L.; Shutov, D. A.; Strumban, E. E.; Aktsipetrov, O. A. J. Opt. Soc. Am. B 1991, 8, 1766.
(37) Nasu, H.; Okamoto, H.; Kurachi, K.; Matsuoka, J.; Kamiya, K.; Mito, A.; Hosono, H. J. Opt. Soc. Am. B 1995, 12, 644.
(38) Alford, W. J.; Smith, A. V. J. Opt. Soc. Am. B 2001, 18, 524.
(39) Dinakaran, S.; Verma, S.; Jerome Das, S.; Kar, S.; Bartwal, K. S.; Gupta, P. K. Physica B: Condensed Matter 2010, 405, 1809.
(40) Boyer, M.; Veron, E.; Becerro, A. I.; Porcher, F.; Suchomel, M. R.; Matzen, G.; Allix, M. CrystEngComm 2015, 17, 6127.
(41) Chen, C.; Wu, Y.; Li, R. Journal of Crystal Growth 1990, 99, 790.
(42) Kim, N. H.; Kim, H. W.; Seoul, C.; Lee, C. Materials Science and Engineering: B 2004, 111, 131.
(43) Lei, M.; Ye, C. X.; Ding, S. S.; Bi, K.; Xiao, H.; Sun, Z. B.; Fan, D. Y.; Yang, H. J.; Wang, Y. G. Journal of Alloys and Compounds 2015, 639, 102.
(44) Yoo, J.-H.; Rafique, S.; Lange, A.; Zhao, H.; Elhadj, S. APL Materials 2018, 6, 036105.
(45) Ho, C.-H.; Tseng, C.-Y.; Tien, L.-C. Opt. Express 2010, 18, 16360.
(46) Liang, C. H.; Meng, G. W.; Wang, G. Z.; Wang, Y. W.; Zhang, L. D.; Zhang, S. Y. Applied Physics Letters 2001, 78, 3202.
(47) Binet, L.; Gourier, D. Journal of Physics and Chemistry of Solids 1998, 59, 1241.
(48) Aono, T.; Kase, K. Solid State Communications 1992, 81, 303.
(49) Masataka, H.; Kohei, S.; Hisashi, M.; Yoshinao, K.; Akinori, K.; Akito, K.; Takekazu, M.; Shigenobu, Y. Semiconductor Science and Technology 2016, 31, 034001.
(50) Masataka, H.; Hisashi, M.; Yoshinao, K.; Akito, K. Japanese Journal of Applied Physics 2016, 55, 1202A1.
(51) Man Hoi, W.; Yoshiaki, N.; Akito, K.; Shigenobu, Y.; Masataka, H. Applied Physics Express 2017, 10, 041101.
校內:2023-07-19公開