簡易檢索 / 詳目顯示

研究生: 李其曄
Lee, Chi-Yeh
論文名稱: 利用貝式平滑分數與動差估計法之小延遲缺陷診斷
Small-Delay Defect Diagnosis Using Bayes-Smoothed Scoring and Method of Moments Estimation
指導教授: 李昆忠
Lee, Kuen-Jong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 49
中文關鍵詞: 小延遲缺陷時序感知診斷假路徑診斷向量經驗貝氏ATEATPGVLSI 測試
外文關鍵詞: small delay defect, timing-aware diagnosis, false path, diagnosis pattern, empirical Bayes, ATE, ATPG, VLSI test
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出針對晶片中小延遲缺陷之第二輪診斷流程。當第一輪診斷流程無法確定缺陷位置,或信心不足時,即可使用第二輪診斷流程。本流程首先以歷史資料求出真實缺陷分數邊界以篩選第一輪候選,再產生成對之假路徑約束測試向量以選擇性激發或遮蔽剩餘候選。藉由比對第二輪量測晶片與模擬結果獲得評估參數,最後以經驗貝氏平滑算法結合動差估計法得到候選分數,再以乘法算法整合一、二輪診斷結果。實驗結果顯示,在六組開源基準電路(5 k–342 k cells)上,多候選之含糊案例的正確診斷率由 74 % 提升至 83 %,且未出現任何由正確轉為錯誤的案例;每次診斷僅需約 9–40 分鐘,外加一次短暫 ATE 重測,對既有診斷流程的額外負擔甚低。

    Small delay defects (SDDs) have emerged as a dominant yield and quality limiter in nanometer ICs, yet traditional transition-fault (TF) diagnosis—rooted in a single-cycle delay model—often leaves several high-scoring but indistinguishable candidates. This work introduces a fast second-pass automated-test-equipment (ATE) diagnosis flow that (1) filters the first-pass candidate list with an adaptive score-margin learned from historical data, (2) generates pair-wise false-path-constrained launch-on-capture patterns that selectively excite or mask each surviving candidate, (3) re-measures the chip under test, and (4) re-scores every candidate with empirical-bayes smoothed scoring and a multiplicative scoring of first- and second-pass evidence.
    Across six open-source benchmarks (5 k–342 k cells), the proposed flow raises the correct cases rate from 74 % to 83 % on the previously ambiguous multi-candidate cases while never degrading any case that was already correct in the first pass (0 correct-to-incorrect flips). Each diagnosis completes in ≈9–40 min of runtime plus a single short ATE retest, adding only modest overhead to conventional silicon debug.

    摘要 i Abstract ii 致謝 iv TABLE OF CONTENTS v TABLES vi TABLE OF FIGURES vii CHAPTER 1 Introduction 1 CHAPTER 2 Background 3 CHAPTER 3 Proposed Diagnosis Flow 5 CHAPTER 4 Margin Filtering 8 CHAPTER 5 Candidate Pairing & False-Path Pattern Generation 11 5.1 False-Path Constraint Behavior and Validation 11 5.2 Fault Model and Pattern Generation Settings 14 CHAPTER 6 Second-Pass ATE 15 CHAPTER 7 Timing-Aware Simulation & Representative Selection 16 7.1 Delay Injection and Simulation Procedure 16 7.2 Selecting a Representative Outcome for Each Candidate 17 CHAPTER 8 Empirical-Bayes Scoring & Multiplicative Scoring 19 8.1 Overview of the Integration Process 19 8.2 Empirical-Bayes Scoring 20 8.3 Multiplicative Scoring 24 CHAPTER 9 Experimental Results 26 CHAPTER 10 Conclusions 37 References 38

    [1] S. Holst et al., “Variation-Aware Small Delay Fault Diagnosis on Compressed Test Responses,” Proc. ITC, 2019.
    [2] J.-H. Jian (2025), “Accurate Timing-Aware Small Delay Defect Diagnosis with Multi-Level Candidate Reduction and Variation Consideration,” (Master’s thesis, National Cheng Kung University).
    [3] K-J. Lee, C-H. Wu, and T-Y. Hou, “An Efficient Procedure to Generate Highly Compact Diagnosis Patterns for Transition Faults,” IEEE TCAD, vol. 41, no. 3, Mar. 2022.
    [4] S. K. Goel, N. Devta-Prasanna, and R. P. Turakhia, “Effective and Efficient Test Pattern Generation for Small Delay Defect,” VTS, 2009.
    [5] X. Yu and R. D. Blanton, “Diagnosis-Assisted Adaptive Test,” IEEE TCAD, vol. 31, no. 9, Sept. 2012

    QR CODE