| 研究生: |
林柏宏 Lin, Bo-Hong |
|---|---|
| 論文名稱: |
交錯式高降壓直流-直流轉換器之研製 Design and Implementation of a High Step-Down Interleaved DC-DC Converter |
| 指導教授: |
陳建富
Chen, Jiann-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 高降壓比 、交錯式 、負載端轉換器 、電壓調節器模組 |
| 外文關鍵詞: | High conversion ratio, interleaved, point-of-load converter, voltage regulator module |
| 相關次數: | 點閱:144 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文實現一新型交錯式高降壓直流-直流轉換器,應用耦合電感、切換式電容與交錯式等技術,主要應用於低壓大電流等電壓調節器。與傳統的兩相式降壓型轉換器相比,新型轉換器將有效佔空比提高了三倍,降低了功率元件上的電壓應力。該新型轉換器能夠通過兩相之間的耦合電感及交錯式並聯技術向輸出端提供大電流及平衡兩相之間的電流達到低電流漣波輸出的特性。
在論文中,推導出了穩態特性如電壓增益比、功率元件承受的電壓和電流應力與輸出電壓漣波均進行了詳細的推導,並且通過軟體驗證其穩態特性。最後,通過使用控制器TMDSDOCK28035,實現了具有48V輸入電壓,1V輸出電壓和30W輸出功率的電路,用以驗證轉換器架構及理論之可行性。其滿載效率為79.3%,最大效率於輸出功率3 W時可達90.2%。
This thesis proposes a novel nonisolated converter topology with high step-down conversion ratio for high current and low voltage application, such as voltage regulator modules (VRM). The proposed converter is based on several existed techniques such as coupled-inductor, switched capacitor and interleaved technique. Compared to a conventional two-phase buck converter. The novel converter is capable of delivering larger current to the output load by two coupled-inductors with interleaved technique. Futhermore, it features an inherent current sharing capability, which can balance the load current and reduce the output current ripple.
The steady-state characteristics, such as high-step down voltage gain, voltage and current stress on the power components, and output voltage ripple are derived in the thesis. Simulation results are obtained by software. Lastly, by using controller TMDSDOCK28035, a converter with 48V input voltage, 1V output voltage and 30W output power is implemented to prove the feasibility of proposed converter. The highest efficiency is around 90.2% when operating at 3 W and the efficiency is 79.3% at full load.
[1] M. Pedram, “Energy-efficient datacenters,” IEEE Trans. Compute.-Aided Des. Integer. Circuits Syst., vol. 31, no. 10, pp. 1465–1484, Oct. 2012.
[2] W. Harrod, "A journey to exascale computing," 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, 2012, pp. 1702-1730.
[3] Z. Guo, Z. Duan, Y. Xu, and H. J. Chao,“Cutting the electricity cost of distributed datacenters through smart workload dispatching,” IEEE Commun. Lett., vol. 17, no. 12, pp. 2384–2387, Dec. 2013.
[4] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption modeling: A survey,” IEEE Commun. Surveys Tut., vol. 18, no. 1, pp. 732–794, Sep. 2016.
[5] E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J. Lambert, K. Radhakrishnan, and M. J. Hill, “FIVR—Fully integrated voltage regulators on 4th generation Intel®_ CoreTM SoCs,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2014, pp. 432–439.
[6] J. A. A. Qahouq and L. Huang, “Highly efficient VRM for wide load range with dynamic non-uniform current sharing,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2007, pp. 543–549.
[7] D. Reusch and J. Glaser, “Getting from 48V to load voltage,” Jan. 2016. [Online]. Available:https://www.powersystemsdesign.com/getting-from-48-v-to-load-voltage/35
[8] Y. Liu, A. Pratt, P. Kumar, M. Xu and F. C. Lee, “390V Input VRM for High Efficiency Server Power Architecture,” APEC 07 - Twenty-Second Annual IEEE Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 2007, pp. 1619-1624.
[9] W. Li and X. He, “A family of interleaved DC-DC converters deduced from a basic cell with winding-cross-coupled inductors (WCCIs) for high step-up or step-down conversions,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1791–1801, Jul. 2008.
[10] K. Yao, M. Ye, M. Xu and F. C. Lee, “Tapped-inductor buck converter for high-step-down DC-DC conversion,” in IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 775-780, July 2005.
[11] S. Ye, W. Eberle, and Y. F. Liu, “A novel non-isolated full bridge topology for VRM applications,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 427–437, Jan. 2008.
[12] H. Cheng, K. M. Smedley, and A. Abramovitz, “A wide-input–wide-output (WIWO) DC–DC converter,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 280–289, Feb. 2010.
[13] M. H. Vafaie, E. Adib, and H. Farzanehfard, “A self powered gate drive circuit for tapped inductor buck converter,” in Proc. IEEE PEDSTC Conf., 2012, pp. 379–384.
[14] P. Xu, J. Wei, and F. C. Lee, “The active-clamp couple-buck converter-a novel high efficiency voltage regulator modules,” in Proc. IEEE Appl. Power Electron. Conf., 2001, vol. 1, pp. 252–257.
[15] B. R. Lin, J. J. Chen, and F. Y. Hsieh, “Analysis and implementation of a bidirectional converter with high conversion ratio,” in Proc. IEEE Int. Conf. Ind. Technol., 2008, pp. 1–6.
[16] G. Zhu and A. Ioinovici, “Implementing IC based designs for 3.3 V supplies,” IEEE Circuits Devices Mag., vol. 11, no. 5, pp. 27–29, Sep. 1995.
[17] B. Oraw and R. Ayyanar, “Load adaptive, high efficiency, switched capacitor intermediate bus converter,” in Proceedings of Inter. Tele. Energ. Conf. (INTELEC), pp. 628–635, Oct. 2007.
[18] M. S. Makowski and D. Maksimovic, “Performance limits of switched capacitor DC–DC converters,” in IEEE Power Electron. Special. Conf. (PESC), vol. 2, pp. 1215–1221, Jun. 1995.
[19] A. Kushnerov and S. Ben-Yaakov, “Algebraic synthesis of fibonacci switched capacitor converters,” in Proceedings of IEEE Inter. Conf. on Microw., Comm., Ant. and Elect. Sys. (COMCAS), pp. 1–4, Nov. 2011.
[20] S. Xiong, S. C. Wong, S. C. Tan, and C. K. Tse, “A family of exponential step-down switched-capacitor converters and their applications in two stage converters,” IEEE Trans. on Pow. Electron., vol.29, no.4, pp.1870– 1880, Apr. 2014.
[21] S. Hou and J. Chen, “A high step-up converter based on switched capacitor voltage accumulator,” in proceeding of IEEE Energ. Conv. Cong. and Expo. (ECCE), pp. 1671–1677, Sept. 2014.
[22] EPC2101—Enhancement-Mode GaN Power Transistor Half Bridge Preliminary Specification Sheet, Efficient Power Conversion, 2016.
[23] J. Wei, P. Xu, H. Wu, F. C. Lee, K. Yao, and M. Ye, “Comparison of three topology candidates for 12V VRM,” in Proc. IEEE APEC’01, 2001, pp. 245–251.
[24] P. Xu, J. Wei, and F. C. Lee, “The active-clamp couple-buck converter- A novel high efficiency voltage regulator module,” in Proc. IEEE APEC’01, 2001, pp. 252–257.
[25] J. Kingston, R. Morrison, M. G. Egan, and G. Hallissey, “Application of a passive lossless snubber to a tapped inductor buck DC/DC converter,” in Proc. IEEE Power Electronics, Machines Drives, 2002, pp. 445–450.
[26] K. Nishijima, K. Abe, D. Ishida, T. Nakano, T. Nabeshima, T. Sato, and K. Harada, “A novel tapped-inductor buck converter for divided power distribution system,” 2006 37th IEEE Power Electronics Specialists Conference, Jeju, 2006, pp. 1-6.
[27] Y. Jang, M. M. Jovanovic and Y. Panov, “Multiphase buck converters with extended duty cycle,” Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC '06., Dallas, TX, 2006, pp. 7.
[28] B. Oraw and R. Ayyanar, “Small Signal Modeling and Control Design for New Extended Duty Ratio, Interleaved Multiphase Synchronous Buck Converter,” INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference, Providence, RI, 2006, pp. 1-8.
[29] I. O. Lee, S. Y. Cho and G. W. Moon, “Interleaved Buck Converter Having Low Switching Losses and Improved Step-Down Conversion Ratio,” in IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3664-3675, Aug. 2012.
[30] P. S. Shenoy, M. Amaro, D. Freeman, and J. Morroni, “Comparison of a 12V, 10A, 3MHz buck converter and a series capacitor buck converter,” 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, 2015, pp. 461-468.
[31] T. Vekslender, O. Ezra, Y. Bezdenezhnykh, and M. M. Peretz, “Closedloop design and time-optimal control for a series-capacitor buck converter,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2016, pp. 308–314.
[32] P. S. Shenoy, O. Lazaro, R. Ramani, M. Amaro, W. Wiktor, J. Khayat, and B. Lynch, “A 5 MHz, 12 V, 10A monolithically integrated two-phase series capacitor buck converter,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2016, pp. 66–72.
[33] P. S. Shenoy, O. Lazaro, M. Amaro, R. Ramani, W. Wiktor, B. Lynch, and J. Khayat, “Automatic current sharing mechanism in the series capacitor buck converter,” in Proc. IEEE Energy Convers. Conf. Expo., Sep. 2015, pp. 2003–2009.
[34] C. Hsieh, T. Liang, L. Yuang, R. Lin, and K. Chen, “Design methodology of an interleaved buck converter for onboard automotive application, multi-objective optimisation under multi-physic constraints,” IEEE Intern. Symp. on Circuits and Systems (ISCAS), pp.3697-3700, 2010.
[35] S. Xiong and S. C. Tan, “Family of cascaded high-voltage-gain bidirectional switched-capacitor DC-DC converters,” 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, 2015, pp. 6648-6654.
[36] Y. Tezuka, H. Kumamoto, Y. Saito, F. Ueno, and T. Inoue, “A low power DC–DC converter using a switched-capacitor transformer,” in Proceedings of Inter. Tele. Energ. Conf. (INTELEC), pp. 261–268, Oct. 1983.
[37] B. Axelrod, Y. Berkovich, and A. Ioinovici, “Switched-Capacitor/Switched-Inductor Structures for Getting Transformerless Hybrid DC–DC PWM Converters, ” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 2, pp. 687-696, March 2008.
[38] Y. M. Chen, S. Y. Tseng, C. T. Tsai, and T. F. Wu, “Interleaved buck converters with a single-capacitor turn-off snubber,” in IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 3, pp. 954-967, July 2004.
[39] C. T. Tsai and C. L. Shen, “Interleaved soft-switching buck converter with coupled inductors,” 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 2008, pp. 877-882.
[40] K. Yao, Y. Qiu, M. Xu and F. C. Lee, “A novel winding-coupled buck converter for high-frequency, high-step-down DC-DC conversion,” in IEEE Transactions on Power Electronics, vol. 20, no. 5, pp. 1017-1024, Sept. 2005.
[41] P. Xu, J. Wei, and F. C. Lee, “Multiphase coupled-buck converter-a novel high efficient 12 V voltage regulator module,” in IEEE Transactions on Power Electronics, vol. 18, no. 1, pp. 74-82, Jan 2003.
[42] 梁適安,交換式電源供應器之理論與實務設計,全華科技圖書股份有限公司,民國八十三年。
[43] N. H. Kutkut, "A full bridge soft switched telecom power supply with a current doubler rectifier," Proceedings of Power and Energy Systems in Converging Markets, Melbourne, Vic., 1997, pp. 344-351.
校內:2022-08-04公開