| 研究生: |
黃志嘉 Huang, Chih-Chia |
|---|---|
| 論文名稱: |
空球與孔洞型奈米材料之合成與應用 Synthesis and Application of Hollow/Porous Nanomaterials |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 氧化銦 、氧化銅 、孔洞 、氣體感測 、接觸角 、腐蝕 、氧化釓 、空球 、核磁共振 、磁性 、毒性 |
| 外文關鍵詞: | ZFC-FC, sol-gel, gas sensor, MRI, Gd2O3, Cu2O, In2O3, contact angle, superparamagnetic, hollow, porous, nanoparticles, surfactant, SQUID, gelatin, template, photothermal, CuO |
| 相關次數: | 點閱:167 下載:20 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前最熱門的兩大科技:[奈米科技]與[生物醫學科技],已發展出許多的應用,例如生物醫學檢測、分子影像造影技術、疾病治療與毒性氣體偵測等...。多孔性與中空型奈米材料具有高的比表面積,若是搭配上第二功能性的物質,可發展成為多功能型的奈米複合材料,例如同時擁有破壞癌細胞與疾病追蹤能力。高表面積奈米材料也可應用於親/疏水性薄膜與氣體偵測領域。本研究開發出三種合成方式,製備中空心結構的奈米空球材料,與多孔性的奈米材料,選擇材料的類型,囊括了主族金屬、過渡金屬與鑭系金屬等元素。
第一部分的實驗,是以膜板法製備出孔洞型與中空型奈米材料,選取具有MRI顯影效果的釓元素,作為本部分實驗的材質,首先利用生物性質的明膠分子,製作成為膜板球,並採取溶膠凝膠法水熱處理鍛燒的方式,可成功製備出氧化釓(Gd2O3)奈米空球,若是採用沉積溶劑氣化煅燒方式,則可合成出孔洞型Gd2O3奈米球,若是改良Gd2O3奈米空球的製備流程(經由碳氣下的高溫退火處理),則可製備Gd2O3/C空球型的奈米複合材料,針對以上三種類型的材料,我們對材料基本的物理化學特性作深入分析,包含了磁性、生物毒性與孔洞結構,並研究各材料對MRI顯影的效果,有趣的是,Gd2O3/C奈米空球在小鼠的顯影能力屬於T1型顯影材料,經過PSMA表面親水性改植後,Gd2O3/C@PSAM奈米空球在肝臟中具有顯著的T2*顯影能力。具有碳結構的Gd2O3/C@PSMA奈米空球,還可利用靜電吸附的方式,與anti-EGFR抗體作結合,使得Gd2O3/C@PSMA奈米空球具有專一性的癌細胞辨識能力,經雷射光照射下,研究雷射功率與藥劑量對癌細胞光熱治療的效果。
第二部分實驗的設計,是利用陽離子型界面活性劑(alkyltrimethylammonium halides (CTAX, X=Br-, Cl-)),以鹵素誘導氧化/腐蝕反應(corrosion/oxidation processes),將實心的銅奈米粒子內部掏空,並氧化成具有半導體特性的氧化亞銅奈米空球(反應時間為16分鐘),經由更長時間的反應(溫度維持於55 oC下反應),氧化亞銅奈米空球產生崩解,產生許多二價氧化銅奈米顆粒,當CTAX碳鏈長度≧16時,並自發性的組裝成葉狀氧化銅奈米粒子(反應時間為4小時)。銅奈米氧化亞銅奈米空球葉狀氧化銅奈米粒子,我們以TEM、XRD和UV-Visible針對不同反應時間,作反應同步偵測與分析,並由實驗數據,推測出鹵素誘發的氧化/腐蝕機制,這種新發展的化學腐蝕過程,未來預期可應用於其他過渡金屬空球氧化物的製備。經由光譜吸收與接觸角量測,發現氧化亞銅奈米空球具有低的水接觸角性質(18o),半導體能隙值為2.4 eV,而葉狀氧化銅奈米粒子則具有高的疏疏水特性(140o),半導體能隙值為1.89 eV,未來預期可應用於塗佈工程。
第三部分的實驗,我們將雷射剝削法合併迴流熱處理,合成氫氧化銦奈米方塊,接著藉由鍛燒的方式,將結構中的水分子移除,最後製備出具有孔洞結構的氧化銦奈米方塊(34.8 nm),經由BET表面積分析,孔洞型氧化銦奈米方塊的表面積數值,優於市售的氧化銦奈米粉末(Alfa Aesar Inc.),粒徑約為40 nm。藉由HR-TEM、XRD、與XPS技術,對兩種氧化銦奈米材料的結晶性質、孔洞結構、晶粒大小和表面組成作深入的材料性質分析,並於酒精氣體感測的研究中,具有孔洞結構的氧化銦奈米方塊有較佳的酒精氣體訊號應答(response)和靈敏度(sensitivity),與其他文獻發表相比,孔洞型氧化銦奈米方塊對酒精感測的能力,感測訊號高於已往已發表的氧化銦奈米材料。
Because of the high surface area behaviors, hollow and porous structures have enormous potential for biotechnologies, molecular imagings, gas sencors, and cancer therapies. To combine therapeutic effect with medical imaging such as magnetic resonance imaging (MRI) and/or optical imaging, the multifunctional nanomaterials have attracted considerable interest in the aspect of biomedical applications. In Part 1-3, several hollow/porous nanomaterials have been reported.
Part 1: We have successfully introduced biological gelatin particles as center cores acting as shape and structure directors to form superparamagnetic hollow and paramagnetic porous Gd2O3 particles, which have average sizes below 200 nm. Two approaches involving sol-gel processes and precursor deposition induced by solvent evaporation were employed to fabricate hollow and porous particles, respectively. The magnetization measurements including ZFC-FC curves and magnetization vs H/T as well as their usefulness for in vitro MR imaging were investigated for both Gd2O3 particles. With the presence of carbon residue on hollow Gd2O3 surface, the hollow Gd2O3 particles exhibited superparamagnetic behavior. The Gd2O3/C nanoshells, having particle size of ~ 138 nm in diameter and ~19.2 nm in shell thickness, were prepared by using biological gelatin particles as core templates (~385.8 nm) through a two-step thermal treatment of calcination at 440 oC in air, followed by an annealing process at 600 oC under N2, The surface of Gd2O3/C nanoshells could be readily modified by PSMA polymer to improve water-dispersible property and promote their biocompatibility. Considering the different MR contrast enhancement for both nanoshells, the Gd2O3/C nanoshells were injected into BALB/C mice to monitor T1 contrast and observed brightened images of kidneys cortex and liver. On the other hand, Gd2O3/C@PSMA nanoshells showed the liver signal darkened in T2 and T2* contrast image. The Gd2O3/C@PSMA nanoshells conjugated with anti-EGFR antibodies were used for targeting and destroying A549 lung cancer cells by means of NIR-triggered killing capability. Both laser power density- and material dose-dependent were carried out to evaluate photothermolysis in cancer cells.
Part 2: We have demonstrated a simple fabrication of hollowing nanoparticles by halide-induced corrosion oxidation with the aid of surfactants. Cuprous oxide Cu2O nanoshells can be generated by simply mixing Cu nanoparticles with alkyltrimethylammonium halides (CTAX, X=Br-, Cl-) at 55 oC for a reaction time of 16 min. The hollowing mechanism proposed is that absorption of surfactants onto Cu surface facilitates the formation of the void interior via an oxidative etching process. With the extension of the reaction up to 4h, the courses of the fragmentation, oxidation, and self-assembly have been observed and formed the CuO ellipsoidal structures. It was found that the headgroup lengths of the surfactants (CnTAB, n=10, 14, 16, and 18) led to different degrees of CuO ellipsoidal formation, where longer surfactants favored ellipsoids generation. Optical absorption by UV-vis measurement was utilized to monitor both oxidation courses of Cu → Cu2O and Cu2O → CuO and determine the band gap energies (Eg) as 2.4 eV for Cu2O nanoshells and 1.89 eV for CuO ellipsoids. For the contact angle (CA) measurements, we have seen the wettability changing from hydrophilicity (18°) to hydrophobicity (140°) when the Cu2O nanoshells shifted to CuO ellipsoids.
Part 3: Porous cube-like crystalline In2O3 nanoparticles with an average diagonal length of 34.8 nm were fabricated by a laser ablation-reflux process to form In(OH)3, followed by a calcination treatment to yield porous In2O3. HR-TEM, XRD, BET, and XPS analysis were used to characterize their crystalline structures, grain sizes, surface areas, and surface compositions. The as-prepared porous indium oxides were tested for their sensing properties toward ethanol. Non-porous In2O3 nanopowder (40 nm) was also examined in order to compare the results with the as-prepared porous In2O3 nanomaterials. The porous In2O3 exhibited much better performance than that of non-porosus In2O3, and showed enhanced sensitivity with a lower detection limit than other reported In2O3-based materials when exposed to ethanol. Good gas sensitivity and linear behavior as a function of ethanol concentration were observed in the porous In2O3 nanoparticles.
參考文獻
1. Lehn, J. M. Supramolecular Ensembles VCH:New York, 1995.
2. Parkin, I. P.; Palgrave, R. G. J. Mater. Chem. 2005, 15, 1689.
3. Faraday, M. Philo. Trans. R. Soc. 1875, 147, 145.
4. Kroto, H. W., J. R. Heath, S. C. O’Brien, R. F. Curl, Smally, R. E. Nature 1985, 318, 162.
5. Iijima, S. Nature, 1991, 354, 56.
6. Nam, J. M.; Park, S. J.; Mirkin, C. A. J. Am. Chem. Soc. 2002, 124, 3820.
7. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Anal. Chem. 2005, 77, 3261.
8. Chan, W. C.; Maxwell, D. Gao, X.; Bailey, R.; Han, M.; Nie, S. Curr. Opin. Biotechnol. 2002, 13, 40.
9. Wu, X.-Y.; Liu, H.-J.; Liu, J.-Q.; Haley, K. N.; Treadway, J.A.; Larson, J. P.; Ge, N.-F.; Peale, F.; Bruchez, M. P. Nat. Biotechnol. 2003, 21, 41.
10. 黃志嘉等 生醫奈米技術 2008
11. El-Sayed, M. A.; Wang, Z. L. J. Phys. Chem. B 1998, 102, 6145.
12. 莊萬發 超微粒子理論與應用, 復漢出版社, 1994.
13. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, J. Phys. Chem. B 2003, 107, 668.
14. 王崇人 科學發展月刊 2002, 354, 48.
15. Ko, S. H; Park, I.; Pan, H.; Grigoropoulos, C. P.; Pisano, A. P.; Luscombe, C. K.; Fre´chet, J. M. J. Nano Lett. 2007, 7, 1869.
16. Dubois, L. H.; Nuzzo, R. G. Ann. Phys. Chem. 1992, 43,437.
17. Templeton, A. C.; Wuelfing, W. P.; Murray, R. W. Acc. Chem. Res. 2000, 33, 27.
18. Tripp S. L.; Wei, A. J. Am. Chem. Soc. 2001, 123, 7955.
19. Simard, J.; Briggs, C.; Boal, A. K. and Rotello, V. M. Chem. Commun. 2000, 1943.
20. Cheng, F.-Y.; Su, C.-H.; Yang, Y.-S.; Yeh, C.-S.; Tsai, C.-Y.; Wu, C.-L.; Wuc, Shieh, D.-B. Biomaterials 2005, 26, 729.
21. Shieh, D.-B.; Su, C.-H.; Chang, F.-Y.; Wu, Y.-N.; Su, W.-C.; Hwu, J.-R.; Chen, J.-H.; Yeh, C.-S. Nanotechnology, 2006, 17, 4174.
22. Hansma, P. K.; Elings, V. B.; Marti, O.; Bracker, C. E. Science, 1988, 242, 209.
23. Xiong, Y.; Xia, Y. Adv. Mater. 2007, 19, 3385.
24. Chen, Y. H.; Yeh, C. S., Chem. Comm . 2001 , 371.
25. Lee, Y. P.; Liu, Y. H.; Yeh, C. S. Phys. Chem. Chem. Phys. 1999 , 1 , 4681.
26. Pu, Y. C.; Hwu, J. R.; Su, W. C.; Shieh, D. B.; Tzeng, Y. H.; Yeh, C. S. J. Am. Chem. Soc., 2006, 128, 11606.
27. Huang, C.-C.; Yeh, C.-S. J. Mater. Sci. Technol. 2008 (invited).
28. Hsiao, M. T.; Chen, S. F.; Shieh, D. B.; Yeh, C. S. J. Phys. Chem. B . 2006 , 110 , 205.
29. Yang, W. H.; Lee, C. F.; Tang, H. Y.; Shieh, D. B.; Yeh, C. S. J. Phys. Chem. B. 2006, 110, 14087.
30. Hu, K. W.; Huang, C. C.; Hwu, J. R.; Su, W. C.; Shieh, D. B.; Yeh, C. S. Chem. Eur. J. 2008, 14, 2956.
31. Link, S.; Mohamed, M. B.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3073.
32. Zharov, V. P.; Galitovskaya, E. N.; Johnson, C.; Kelly, T. Laser Surg. Med. 2005, 37, 219.
33. Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. Y.; Zhang, H.; Xia, Y.; Li, X. Nano Lett. 2007, 7, 1318.
34. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. J. Am. Chem. Soc. 2006, 128, 2115.
35. Lee, S.-M.; Cho, S.-N.; Cheon, J. Adv. Mater. 2003, 15, 441.
36. Xia, Y.; Sun, Y. Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. Adv. Mater. 2003, 15, 353.
37. Yugang, S.; Xia, Y. Anal. Chem. 2002, 74, 5297.
38. Dmitry G.; Shchukin, Gleb B. Angew. Chem. Int. Ed. 2003, 42, 4471.
39. 林東毅, “奈米容器:具有可控制物質進出之奈米結構”, 國立成功大學化學研究所, 2005.
40. Iler, R. K. J. Colloid Interface Sci. 1966, 21, 569.
41. Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111.
42. Caruso, F. Adv. Mater. 2001, 13, 11.
43. Yugang, S.; Xia, Y. Anal. Chem. 2002, 74, 5297.
44. Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Chem. Mater. 1997, 9, 2544.
45. Jang, J.; Ha, H. Langmuir 2002, 18, 5613.
46. Ren, T. Z.; Yuan, Z. Y.; Su, B. L. Chem. Phys. Lett. 2003, 374, 170.
47. Wong, M. S.; Cha, J. N.; Choi, K.; Deming, T. J.; Stucky, G. D. Nano Lett. 2002, 2, 583.
48. Iler, R. K. J. Colloid Interface Sci. 1966, 21, 569.
49. Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111.
50. Caruso, F.; Donath, E.; Mohwald, H. J. Phys. Chem. B. 1998, 102, 2011.
51. Sukhorukov, G. B.; Donath, E.; Davis, S.; Lichtenfeld, H.; Caruso, F.; Popov, V. I.; Mohwald, H. Polym. Adv. Technol. 1998, 9, 759.
52. Caruso, F. Top. Curr. Chem. 2003, 227, 145.
53. Li, I-F.; Su, C.-H.; Sheu, H.-S.; Chiu, H.-C.; Lo, Y.-W.; Lin, W.-T.; Chen, J.-H.; Yeh, C.-S. Adv. Funt. Mater. 2008, 18, 766.
54. Park, M. K.; Xia, C.; Advincula, R. C.; Schutz, P.; Caruso, F. Langmuir 2001, 17, 7670.
55. Fleming, M. S.; Mandal, T. K.; Walt, D. R. Chem. Mater. 2001, 13, 2210.
56. Ung, T.; L. LizMazán,; Mulvaney,; M. P. Langmuir 1998, 14, 3740.
57. F. Caruso, A. Caruso, H. Möhwald, Science, 1998, 282, 1111.
58. Sun, X. M.; Li, Y. D. Angew. Chem. 2004, 116, 607.
59. Zhong, Z.; Yin, Y.; Gates, B.; Xia, Y. Adv. Mater. 2000, 12, 206.
60. Park, S. H.; Qin, D.; Xia, Y. Adv. Mater. 1998, 10, 1028.
61. Gates, B.; Qin, D.; Xia, Y. Adv. Mater. 1999, 11, 466.
62. Yin, Y.; Lu, Y.; Gates, B.; Xia, Y. Chem. Mater. 2001, 13, 1146.
63. Sun, Y.; Xia, Y. Science 2002, 298, 2176.
64. Sun, Y.; Xia, Y. Anal. Chem. 2002, 74, 5297.
65. Sun, Y.; Mayers, B. T.; Xia, Y. Nano Lett.2002, 2, 481.
66. Sun, Y.; Mayers, B. T.; Xia, Y. Adv. Mater.2003, 15, 641.
67. Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos A. P. Science 2004, 304, 711.
68. Smigelskas, A. D.; Kirkenall, E. O. Trans. AIME 1947, 171, 130.
69. Chang, Y.; Lye, M. L.; Zen, H. C. Langmuir 2005, 21, 3746.
70. Peng, S.; Sun, S. Angew. Chem. Int. Ed. 2007, 46, 4155.
71. Yang, H. G.; Zeng, H. C. J. Phys. Chem. B 2004, 108, 3492.
72. Chang, Y.; Teo, J. T.; Zeng, H. C. Langmuir 2005, 21, 1074.
73. Jia, C.-J.; Sun, L.-D.; Yan, Z.-D.; You, L.-P.; Luo F.; Han, X.-D.; Pang, Y.-C.; Zhang, P. Z.; Yan, C.-H. Angew. Chem. Int. Ed. 2005, 44, 4328.
74. Li, J.; Zeng, H. C. J. Am. Chem. Soc. 2007, 129, 15839.
75. Tenne, R. Colloid Surface A 2002, 18, 5613.
76. Hotz, J.; Meier, W. Langmuir 1998, 14, 1031.
77. Discher, B. M.; Won, Y. Y.; Ege, D.S.; Lee, J. C. M.; Bates, F. S.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.
78. Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120, 4877.
79. Wendland, M. S.; Zimmerman, S. C. J. Am. Chem. Soc. 1999, 121, 1389.
80. Chang-Chien, C.-Y.; Hsu, C.-H.; Lee, T.-Y.; Liu, C.-W.; Wu, S.-H.; Lin, H.-P.; Tang, C.-Y.; Lin, C.-Y. Eur. J. Inorg. Chen. 2007, 3798.
81. Yeh, Y.-Q.; Chen, B.-C.; Lin, H.-P.; Tang, C.-Y. Langmuir, 2006, 22, 6.
82. http://www.esf.org/publication/214/Nanomedicine.pdf)
83. http://nihroadmap.nih.gov/nanomedicine
84. Miyawaki, J.; Yudasaka, M.; Azami, T.; Kubo, Y.; Iijima, S. Acsnano, 2007, 2, 213.
85. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. The Royal Society and Royal Academy of Engineering: London, 2004 (http://www.nanotec.org.uk/finalReport.htm).
86. National Institute of Environmental Health Sciences (NIEHS) OPPE Factsheet Nanotechnology Safety Assessment. NIEHS: Washington, DC, 2003. July
87. O’Regan, B.; Grätzel, M. Nature 1991,353 ,737.
88. Tachikawa, T.; Asanoi, Y.; kawai, K.; Tojo, S.; Sugimoto, A.; Fujitsuka, M.; Majima, T. Chem. Eur. J. 2008, 14, 1492.
89. Endres, P. J.; Paunesku, T.; Vogt, S.; Meade, T. J.; Woloschak, G. E. J. Am. Chem. Soc. 2007, 129, 15760.
90. Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Langmuir 2007, 23, 8670.
91. Miyawaki, J.; Yudasaka, M.; Imai, H.; Yorimitsu, H.; Isobe, H.; Nakamura, E.; Iijima, S. J. Phys. Chem. B 2006, 110, 5179.
92. Kneipp, K., H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld. Chem. Rev. 1999, 99, 2957.
93. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy., C. J. Anal. Chem. 2005, 77:3261.
94. Huang, X.; El-Sayed, I. H.; Qian, W. El-Sayed, M. A. Nano Lett. 2007, 7, 1591.
95. Kneipp, J., H. Kneipp, M. McLaughlin, D. Brown and K. Kneipp. Nano Lett. 2006, 6, 2225.
96. Jarvis, R. M. and R. Goodacre. Anal. Chem. 2004, 76, 40.
97. Guo, T., P. Nikolaev, A. Thress, D. Colbert and T. R. Smalley. E. Chem. Phys. Lett. 1995, 243, 49.
98. Mirkin, C. A. Inorg. Chem. 2000. 39 ,2258.
99. Nam, J. M.; Park , S. J.; Mirkin, C. A. J. Am. Chem. Soc. 2002, 124, 3820.
100. Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Science 2003, 301, 1884.
101. Kataoka , Y.; Bindokas, V. P.; Duggan, R. C.; Murley, J. S.; Grdina D. J. , J. Radiat. Res. 2006, 47, 245.
102. Yu, W. W.; Chang,E.; Drezek, R;. Colvin, V. L. Biochem. Biophys. Res. Commun., 2006, 348, 781.
103. Fu, C. C.; Lee, H. Y.; Chen, K.; Lim, T. S.; Wu, H. Y.; Lin, P. K.; Wei, P. K.; Tsao, P. H.; Chang, H. C.; Fann, W. Proc. Natl. Acad. Sci. 2007, 104, 727.
104. Liu, T.; Liu, B.; Zhang, H.; Wang, Y. J. Fluoresc. 2005, 15, 729.
105. Millo, O.; Katz, D.; Cao, Y.; Banin, U. Phys. Rev. Lett. 2001, 86, 5751 (.
106. 李玉寶, 奈米生醫材料, 初版, 台北市:五南, 2006, 323.
107. 謝嘉民, 賴一凡, 林永昌, 枋志堯, 奈米通訊2005, 12, 28.
108. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, Science 2005, 307, 538.
109. Kattumuri, V., K. Katti, S. Bhaskaran, J. B. Boote, S. W. Casteel, G. M.Fent, D. J. Robertson, M. Chandrasekhar, R. Kannan and K. V. Katti. Small 2007, 3, 333.
110. Krause, W. Adv. Drug Delvery Rev. 1999, 37, 159.
111. Kim, D., S. Park, J. H. Lee, Y. Y. Jeong and S. Jon. J. Am. Chem. Soc. 2007, 129, 7661.
112. Harisinghani, M. G.; Barentsz, J.; Hahn, P. F.; Deserno, W. M.; Tabatabaei, S.; van de Kaa, C. H.; de la Rosette, J.; Weissleder, R. N. Engl. J. Med. 2003, 348, 2491.
113. Jun, Y.-w.; Huh, Y.-M.; Choi, J.-s.; Lee, J.-H.; Song, H.-T.; Kim, S.-j.; Yoon, S.; Kim, K.-S.; Shin, J.-S.; Suh, J.-S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 5732.
114. Bonnemain, B. J. Drug Target 1998, 6, 167.
115. Jung, C. W. Magn. Reson. Imaging 1995, 13, 675.
116. Jun, Y.-w.; Huh, Y.-M.; Choi, J.-s.; Lee, J.-H.; Song, H.-T.; Kim, S.-j.; Yoon, S.; Kim, K.-S.; Shin, J.-S.; Suh, J.-S.; Cheon, J. J. Am. Chem. Soc. 2005, 127, 5732.
117. Lee, J.-H.; Huh, Y. -M.; Jun, Y.; Seo, J.; Jang, J.; Song, H.-T.; Kim, S.; Cho, E.-J.; Yoon, H.-G.; Suh, J.-S.; Cheon, J. Nat. Med. 2007, 13, 95.
118. Chang, F. Y.; Yang, Y. S.; Huang, W. H.; Yeh, C. S.; Tsai, C. Y.; Wu, C. L.; Shieh, D. B. Biomaterials 2005, 26, 729.
119. Su, C.-H.; Sheu, H.-S.; Lin, C.-Y.; Huang, C.-C.; Lo, Y.-W.; Pu, Y.-C.; Weng, J.-C.; Shieh, D.-B.; Chen, J.-H.; Yeh, C.-S. J. Am. Chem. Soc. 2007, 129, 2139.
120. P. Tyagi, P. C. Wu, M. Chancellor, N. Yoshimura, and L. Huang, Mol. Pharm. 2006, 3, 369.
121. New, R. R. C. Liposome: A practical Approach, New York: Oxford University Press, 1990, p. 221.
122. Cheng, F. Y.; Saprina Wang, P. H.; Su, C. H.; Tsai, T. L.; Wu, P. C.; Shieh, D. B.; Chen, J. H.; Patrick Hsieh, C. H.; Yeh, C. S. Biomaterial 2008, 29, 2104.
123. Wu, P. C.; Wang, W. S.; Huang, Y. T.; Shen, H. S.; Lo, Y. W.; Tsai, T. L.; Shieh, D. B.; Yeh, C. S. Chem. Eur. J. 2007, 13, 3878.
124. Lin, Y.-S.; Tsai, C.-P.; Huang, H.-Y.; Kuo, C.-T.; Huang, Y.; Huang, D.-M.; Chen, Y.-C.; Mou, C.-Y. Chem. Mater. 2005, 17, 4570.
125. Ji, X.; Shao, R.; Elliott, A. M.; Stafford, R. J.; Esparza-Coss, E.; Bankson, J. A.; Liang, G.; Luo, Z.-P.; Park, K.; Markert, J. T.; Li, C. J. Phys. Chem. C. 2007, 111, 6245.
126. Miyamoto, Y.; Umebayashi, Y.; Nishisaka, T. J. Photochem. Photobiol. B: Biol. 1999, 53, 53.
127. Isobe, H.; Nakanishi, W.; Tomita, N.; Jinno, S.; Okayama, H.; Nakamura, E.; Becker, L. Mol. Pharm. 2006, 3, 124.
128. Sun, T.; Xu, Z. Bioorg. Med. Chem. Lett. 2006, 16, 3731.
129. Ros, T. D.; Spalluto, G.; Prato, M.; Spalluto, G. Croat. Chem. Acta. 2001, 74, 743.
130. Bosi, S.; Ros, T. D.; Spalluto, G. Eur. J. Med. Chem. 2003, 38, 913.
131. Baker, I.; Zeng, Q.; Sullivan, C. R. J. Appl. Phys. 2006, 99, 08H106.
132. Shinkai, M. J. J. Biosci. Bioeng. 2002, 94, 606.
133. Kam, N. W. S.; O’Connell, M.; Wisdom, J. A.; Dai, H. Proc. Natl. Acad. Sci. 2003, 102, 11600.
134. Kim, J.-W.; Shashkov, E. V.; Galanzha, E. I.; kotagiri, N.; Zharov, V. P. Laser Surg. Med. 2007, 39, 622.
135. Panchapakeasn, B.; Lu, S.; Sivakumar, K.; taker, K.; Cesarone, G.; Wickstrom, E. Nanobiotech. 2005, 3, 133.
136. Miyako, E.; Nagata, H.; Hirano, K.; Sakamoto, K.; Makita, Y.; Nakayama, K.-I.; Hirotsu, T. Nanotechnology 2008, 19, 075106.
137. Miyako, E.; Nagata, H.; Hirano, K.; Makita, Y.; Hirotsu, T. Nanotechnology 2007, 18, 475103.
138. Seo, W. S.; Lee, J. H.; Sun, N.; Suzuki, Y.; Mann, D.; Liu, Z.; Terashima, M.; Yang, P,C.; Mcconnell, M. V.; Nishimura, D. G.; Dai, H. Nat. Mater. 2006, 5, 917.
139. Kim, J.; Lee, J. E.; Lee, J.; Jang, Y.; Kim, S.-W.; An, K.; Yu, J. H.; Hyeon, T. Angew. Chem. Int. Ed. 2006, 45, 4789.
140. O’Neal, D. P.; Hirsch, L. R.; Halas, N. J.; Payne, J. D.; West, J. L. Cancer lett. 2004, 209, 171.
141. Hifumi, H.; Yamalka, S.; Tanimoto, A.; Citterio, D.; Suzuki, K. J. Am. Chem. Soc. 2006, 128, 15090.
142. Evanics, F.; Diamente, P. R.; van Veggel, F. C.; Stanisz, J. G. J.; Prosser, R. S. Chem. Mater. 2006, 18, 2499.
143. Bridot, J. L.; Faure, A. C.; Laurent, S. Rivière, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coll, J. L.; Elst, L. V.; Muller, R.; Roux, S.; Perriat, P.; Tillement, O. J. Am. Chem. Soc. 2007, 129, 5076–5084.
144. Engstrom, M.; Klasson, A.; Pedersen, H.; Vehlberg, C.; Kall, P.-O.; Uvdal, K. Magn. Reson. Mater. Phy. 2006, 19, 180.
145. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293.
146. Pieter, W. J.; Taylor, K. M. L.; Lin, H. An, W.; Lin, W. J. Am. Chem. Soc. 2006, 128, 9024.
147. Na, H. B.; Lee, J. H.; An, K.; Park, Y. H; Park, M.; Lee, I. S.; Nam, D.-H.; Kim, S. T.; Kim, S.-H.; Kim, S.-W.; Lim, K.-H.; Kim, K.-S.; Kim, S.-O.; Hyeon, T. Angew. Chem. Int. Ed. 2007, 46, 5397.
148. Garcia-Murillo, A.; Le Luyr, C.; Dujardin, C.; Pedrini, C.; Mugnier, J. Opt. Mater. 2001, 16, 39.
149. Coester, C.; Bon Briesen, H.; Langer, H.; Kreuter, J. J Microencapsulation 2000, 17, 187.
150. Jastrzebska, M.; Wrzalik, R.; Kocot, A.; Zalewska-Rejdak, J.; Cwalina, B. J. Biomater. Sci. Polymer Edu. 2003, 14, 185.
151. Chen, S. Y.; Cheng, S. Chem. Mater. 2007, 19, 3041.
152. Sun, X.; Li, Y. Angw. Chem. Int. Ed. 2004, 43, 3827.
153. Sun, X.; Liu, J.; Li, Y. Chem. Eur. J. 2006, 12, 2039.
154. Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Nature, 1998, 396, 152.
155. Li, Z.; Jaroniec, M.; Papakonstantnou, P.; Tobin, J. M.; Vohrer, U.; Kumar, S.; Attard, G.; Holmes, J. D. Chem. Mater., 2007, 19, 3349.
156. Ferrari, A. C.; Robertson, J. Phys. Rev. B 2000, 61, 14095.
157. Guo, Z.; Pereira, T.; Choi, O.; Wang, Y.; Hahn, H. T. J. Mater. Chem. 2006, 16, 2800.
158. Oliverira, M. M.; Schnitzler, D. C.; Zarbin, A. J. G. Chem. Mater. 2003, 15, 1930.
159. Leslie-Pelecky, D. L.; Pieke R. D. Chem. Mater. 1996, 8, 1770.
160. Wang, H.; Zhang, F.; Zhang, W.; Wang, X.; Lu, Z.; Qian, Z.; Sui, Y. Donag, D. Su, W. J. Cryst. Growth 2006. 293, 169.
161. Hou, Y.; Yu, J.; Gao, S. J. Mater. Chem. 2003, 13, 1983.
162. Garcia-Otero, J.; Poto, M. Rivas, J. Bunde, A. Phys. Rev. Lett. 2000, 84, 167.
163. Chantrell, R. W. ; Walmsley, N. Phys. Rev. B 2000, 63, 024410-1.
164. Mamiya, H. ; Nakatani, I. ; Furubayashi, T. Phys. Rev. Lett. 1998, 80, 177.
165. Seehra, M. S. ; Babu, V. S. ; Manivannan, A. Phys. Rev. B 2000, 61, 3513.
166. Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y. Adv. Mater. 2007, 19, 33
167. Crespo, P.; Litran, R.; Rojas, T. C.; Multigner, M.; De la Fuent, J. M.; Sanchez-Lopez, J. C.; Garcia, M. A.; Hernando, A.; Penades, S.; Fernandez, A. Phys. Rev. Lett. 2004, 93, 087204-1.
168. Garcia, M. A.; Merino, J. M.; Fernandez Pinl, E.; Quesada, A.; De la Venta, J.; Ruiz Gonzalz, M. L.; Castro, G. R.; Crespo, P.; Llopis, J.; Gonzalez-Calbt, J. M.; Hernando, A. Nano Lett. 2007, 7, 1489.
169. Norek, M.; Pereira, G. A.; Geraldes, C. F. G. C.; Denkova, A.; Zhou, W.; Peters, J. A. J. Phys. Chem. C 2007, 111, 10240.
170. McDonald, M. A.; Watkin, K. L. Acad. Radiol. 2006, 13, 421.
171. Fortin, M.-A.; Jr, R. M. P.; Söderlind, F.; Klasson, A.; Engström, M.; Veres, T.; Käll, P.-O.; Uvdal, K. Nanotechnology 2007, 18, 395501.
172. Kuo, P.; Kanal, E.; Abu-Alfa, A.; Cowper, S. Radiology Mar. 2007, 242, 647.
173. 刘会雪 , 杨晓达 , 王夔 中國稀土學報 2006, 4, 27.
174. Wang, D.; Li, Z.-C.; Chen, L. J. Am. Chem. Soc. 2006, 128, 15078.
175. Tsai, C.-P.; Hung, Y.; Chou, Y.-H.; Huang, D.-M.; Hsiao, J.-K.; Chang, C.; Chen, Y.-C.; Mou, C.-Y. Small, 2008, 4, 186.
176. Briskman, R. N. Sol. Energy Mater. Sol. Cells 1992, 27, 361.
177. Gou, X.; Wang, G.; Yang, J; Park, J.; Wexler, D. J. Mater. Chem. 2008, 18, 965.
178. Zhang, Z.; Sun, H.; Shao, X.; Li, D.; Yu, H.; Han, M. Adv. Mater. 2005, 17, 42.
179. Fontana, M. G.; Greene, N. D. Corrosion Engineering, 2nd ed., McGraw-Hill, 1978, pp. 41– 52.
180. Nagy, G.; Roy, D. Langmuir 1993, 9, 1868.
181. Elsner, C . I.; Salvarezza, R. C.; Arvia, A. Electrochim. Acta 1988, 33, 1735.
182. Cotton, F. A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; Wiley: New York, 1980.
183. Rodriguez-Fernandez, J.; Perez-Juste, J.; Mulvaney, P.; Liz-Marzan, L. M. J. Phys. Chem. B 2005, 109, 14257.
184. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Song, J. Z. Y.; Liu, B.; Jiang, L.; Zhu, D. Adv. Mater. 2002, 14, 1857.
185. Tsai, S. H.; Liu, Y. H.; Wu,P. L.; Yeh, C. S. J. Mater. Chem. 2003, 13, 978.
186. Huang, C.-C.; Yeh, C.S. Ho, C.-J. J. Phys. Chem. B 2004, 108, 4940.
187. Chiu, H.-C.; Yeh, C.-S. J. Phys. Chem. C 2007, 111, 7256.
188. Soulantica, K.; Erades, L.; Sauvan, M.; Senocq, F.; Maisonnat, A.; Chaudret B. Adv. Funt. Mater. 2003, 13, 553.
189. Xiangfeng, C.; Caihong, W.; Dongli, J.; Chenmou, Z. Chem. Phys. Lett. 2004, 399, 461.
190. Li, B.; Xie, Y.; Jing, M.; Rong, G.; Tang, Y.; Zhang G. Langmuir 2006, 22, 9380.
191. Pinna, N.; Neri, G.; Antomietti, M.; Niederberger, M. Angew. Chem. Int. Ed. 2004, 43, 4345.
192. Franke, M. E.; Koplin, T. J. Simon, U. Small, 2006, 2, 26.
193. Korotcenkov, G. Sens. Actuators B 2005, 107, 209.
194. Yamanoe, N.; Sakai, G.; Shimanoe, K. Catal. Surv. Asia 2003, 7. 63.
195. Ogawa, H.; Nishikawa, M.; Abe, A. J. Appl. Phys. 1982, 53, 4448.
196. Nefedov, V. I.; Gati, D.; Dzhurinskii, B. F.; Sergushin, N. P.; Salyn, Y. V. Russian J. Inog. Chem. 1975, 20, 2307.
197. Gurlo, A.; Ivanovskaya, M.; Pfau, A.; Weimar, U.; Göpel, W. Thin Solid Film 1997, 307, 288.
198. Kim, B.; Kim, J.; Lee, D.; Lim, J.; Huth, J. Sens. Actuators B 2003, 89, 180.
199. Jiao, Z.; Wu, M.; Gu, J.; Sun, X. Sens. Actuators B 2003, 94, 216.
200. Liu, Y.; Koep, E.; Liu, M. Chem. Mater. 2005, 17, 3997.
201. Franke, M. E.; Koplin, T. J.; Simon, U. Small, 2006, 2, 36.