簡易檢索 / 詳目顯示

研究生: 盧志榮
Lu, Zhi-Rong
論文名稱: 飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究
Power Flow Control and Stability Analysis of Wind Power Generation Systems Using a Flywheel Energy-Storage System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 293
中文關鍵詞: 風場飛輪儲能系統感應發電機穩定度
外文關鍵詞: stability., induction generator, flywheel energy-storage system, wind farm
相關次數: 點閱:101下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以聚集等效風場經由傳輸線並聯市電架構
    下,比較含與不含飛輪儲能系統之穩定度、穩態及動態做為
    研究目標。在三相平衡系統下採用交直軸等效電路模型,分
    別建立風、風渦輪機、感應發電機以及飛輪儲能系統等之模
    型,並推導其數學模型來完成整體動態方程式。在穩態方
    面,則分別對不同風速及變動飛輪儲能系統之控制參數等量
    對系統特性之影響做一詳細討論。在動態研究方面,完成轉
    矩干擾、市電端電壓下降及變動風速等模擬。由模擬結果顯
    示,飛輪儲能系統確實能夠有效改善風場在變動風速及干擾
    下之動態特性。

    This thesis presents the analyzed results of stability, steady state, and
    dynamics of an equivalent aggregated wind farm (WF) connected to a
    utility grid through a transmission line with and without a flywheel
    energy-storage system (FESS). The d-q axis equivalent-circuit model is
    employed to establish the models for wind, wind turbine, induction
    generator, and the FESS to derive the complete dynamic equations of the
    studied system under three-phase balanced loading conditions.
    Steady-state performance of the studied system under different wind
    speeds and various control parameters of the FESS are examined.
    Dynamic simulations of the studied system subject to torque disturbance,
    voltage drop of utility grid, and variable wind speeds are also
    implemented. It can be concluded from the simulation results that the
    proposed FESS can effectively improve the performance of the studied
    WF under disturbance conditions and variable wind speeds.

    中文摘要................................................................................................. I 英文摘要................................................................................................ II 誌謝 ...................................................................................................... III 目錄.......................................................................................................IV 表目錄................................................................................................VIII 圖目錄...................................................................................................XI 符號說明.............................................................................................XV 第一章 緒 論....................................................................................1 1-1 研究背景................................................................................1 1-2 研究動機................................................................................2 1-3 相關文獻回顧.........................................................................5 1-4 本論文貢獻..........................................................................10 1-5 研究內容概述.......................................................................10 第二章 系統數學模型.....................................................................12 2-1 前言......................................................................................12 2-2 風之數學模型.......................................................................12 2-3 聚集等效風渦輪機之數學模型...........................................14 2-4 旋角控制之數學模型...........................................................17 2-5 感應發電機之數學模型.......................................................18 2-6 飛輪儲能系統之數學模型...................................................20 2-7 聚集等效風場結合飛輪儲能系統並聯市電之數學模型....27 第三章 市電並聯型聚集等效風場之穩態分析..............................38 3-1 前言......................................................................................38 3-2 聚集等效風場之穩態分析(無飛輪儲能系統) .....................39 3-2-1 風速改變之穩態分析.................................................40 3-2-2 聚集等效風場之功因改善電容器電容值改變之 穩態分析....................................................................45 3-2-3 匯流排電容器電容值改變之穩態分析......................50 3-2-4 本地負載阻抗改變之穩態分析.................................55 3-2-5 聚集等效風場與匯流排連接之線路參數改變之 穩態分析....................................................................60 3-2-6 市電端傳輸線之線路參數改變之穩態分析..............65 3-2-7 市電端電壓改變之穩態分析.....................................70 3-3 聚集等效風場連接飛輪儲能系統之穩態分析....................74 3-3-1 風速改變之穩態分析.................................................75 3-3-2 聚集等效風場之功因改善電容器電容值改變之 穩態分析....................................................................83 3-3-3 匯流排電容器電容值改變之穩態分析......................90 3-3-4 本地負載阻抗改變之穩態分析.................................97 3-3-5 聚集等效風場與匯流排連接之線路參數改變之 穩態分析..................................................................104 3-3-6 市電端傳輸線之線路參數改變之穩態分析............ 111 3-3-7 市電端電壓改變之穩態分析................................... 118 3-3-8 改變系統端整流器(Cs)相角 之穩態分析.............125 3-3-9 改變系統端整流器(Cs)調變指數kms 之穩態分析...131 3-3-10 改變飛輪端整流器(Cf)相角 之穩態分析..............137 3-3-11 改變飛輪端整流器(Cf)調變指數kmf 之穩態分析...143 3-3-12 改變匯流排電壓參考值之穩態分析........................149 3-3-13 改變飛輪儲能系統直流鏈電壓參考值之穩態 分析..........................................................................156 3-3-14 改變飛輪電機端電壓參考值之穩態分析................163 第四章 市電並聯型聚集等效風場之動態分析............................170 4-1 前言....................................................................................170 4-2 聚集等效風場發生轉矩干擾之分析..................................170 4-2-1 聚集等效風場發生0.1 p.u.轉矩干擾之分析...........171 4-2-2 聚集等效風場發生0.15 p.u.轉矩干擾之分析.........176 4-3 市電端發生電壓降之分析.................................................182 4-3-1 市電端發生電壓下降2 %之分析............................182 4-3-2 市電端發生電壓下降3 %之分析............................188 4-4 風速變動之分析.................................................................194 4-4-1 擾動風之分析...........................................................194 4-4-2 斜坡風之分析...........................................................200 4-4-3 陣風之分析..............................................................207 4-5 本地負載瞬間改變之分析.................................................213 4-6 聚集等效風場之功因改善電容器電容值變動之分析......219 4-7 匯流排電容器電容值變動之分析.....................................225 4-8 聚集等效風場與匯流排連接之線路參數變動之分析......231 4-9 市電端傳輸線之線路參數變動之分析..............................236 4-10 不同飛輪慣性之動態模擬比較.........................................241 第五章 利用極點安置法設計控制器............................................246 5-1 前言....................................................................................246 5-2 控制系統之模型.................................................................246 5-3 極點安置法設計PID 控制器.............................................247 5-4 靈敏度分析........................................................................250 5-5 含及不含PID 控制器之動態分析.....................................255 5-5-1 聚集等效風場發生轉矩干擾之分析........................255 5-5-2 風速變動之分析.......................................................261 第六章 結論與未來研究方向.......................................................267 6-1 結論....................................................................................267 6-2 未來研究方向.....................................................................269 參考文獻 ..........................................................................................270

    [1] J. Zhang, Z. Chen, L. Cai, and Y. Zhao, “Flywheel energy storage
    system design for distribution network,” IEEE Power Engineering
    Society Winter Meeting, vol. 4, January 2000, pp. 2619-2623.
    [2] R. S. Weissbach, G. G. Karady, and R. G. Farmer, “A combined
    uninterruptible power supply and dynamic voltage compensator
    using a flywheel energy storage system,” IEEE Transactions on
    Power Delivery, vol. 16, no. 2, April 2001, pp. 265-270.
    [3] R. Cardenas, R. Pena, G. Asher, and J. Clare, “Control strategies for
    enhanced power smoothing in wind energy systems using a
    flywheel driven by a vector-controlled induction machine,” IEEE
    Transactions on Industrial Electronics, vol. 48, no. 3, June 2001, pp.
    625-635.
    [4] H. Akagi and H. Sato, “Control and performance of a doubly-fed
    induction machine intended for a flywheel energy storage system,”
    IEEE Transactions on Power Electronics, vol. 17, no. 1, January
    2002, pp. 109-116.
    [5] R. Hebner, J. Beno, and A. Walls, “Flywheel batteries come around
    again,” IEEE Spectrum, vol. 39, no. 4, April 2002, pp. 46-51.
    [6] R. Cardenas, R. Pena, G. Asher, and J. Clare, “Power smoothing in
    wind generation systems using a sensorless vector controlled
    induction machine driving a flywheel,” IEEE Transactions on
    Energy Conversion, vol. 19, no. 1, March 2004, pp. 206-216.
    [7] B. H. Kenny, P. E. Kascak, R. Jansen, T. Dever, and W. Santiago,
    “Control of a high-speed flywheel system for energy storage in
    space applications,” IEEE Transactions on Industry Applications,
    vol. 41, no. 4, July/August 2005, pp. 1029-1038.
    [8] J. Zhang, “Research on flywheel energy storage system using in
    power network,” IEEE Power Electronics and Drives Systems
    Conference, vol. 2, November 2005, pp. 1344-1347.
    [9] M. H. Wang and H. C. Chen, “Transient stability control of
    multimachine power systems using flywheel energy injection,” IEE
    Proceeding-Generation Transmission and Distribution, vol. 152, no.
    5, September 2005, pp. 589-596.
    271
    [10] J. L. S. Neto, R. D. Andrade, L. G. B. Rolim, A. C. Ferreira, G. G.
    Sotelo, and W. Suemitsu, “Experimental validation of a dynamic
    model of a SRM used in superconducting bearing flywheel energy
    storage system,” IEEE International Symposium on Industrial
    Electronics, vol. 3, July 2006, pp. 2492-2497.
    [11] G. Li, S. Cheng, J. Wen, Y. Pan, and J. Ma, “Power system stability
    enhancement by a double-fed induction machine with a flywheel
    energy storage system,” IEEE Power Engineering Society General
    Meeting, vol. 18, no. 22, June 2006, pp. 1-7.
    [12] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler,
    “Power smoothing using a flywheel driven by a switched reluctance
    machine,” IEEE Transactions on Industrial Electronics, vol. 53, no.
    4, June 2006, pp. 1086-1093.
    [13] S. Samineni, B. K. Johnson, H. L. Hess, and J. D. Law, “Modeling
    and analysis of a flywheel energy storage system for voltage sag
    correction,” IEEE Transactions on Industry Applications, vol. 42,
    no. 1, January/February 2006, pp. 42-52.
    [14] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu,
    “Control and performance evaluation of a flywheel energy-storage
    system associated to a variable-speed wind generator,” IEEE
    Transactions on Industrial Electronics, vol. 53, no. 4, June 2006, pp.
    1074-1085.
    [15] W. Li and G. Joos, “Comparison of energy storage system
    technologies and configurations in a wind farm,” IEEE Power
    Electronics Specialists Conference, vol. 17, no. 21, June 2007, pp.
    1280-1285.
    [16] R. F. Thelen, A. Gattozzi, D. Wardell, and A. Williams, “A 2-MW
    motor and ARCP drive for high-speed flywheel,” IEEE Applied
    Power Electronics Conference, February/March 2007, pp.
    1690-1694.
    [17] R. de Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. da
    Silva Neto, R. M. Stephan, W. I. Suemitsu, and R. Nicolsky,
    “Flywheel energy storage system description and tests,” IEEE
    Transactions on Applied Superconductivity, vol. 17, no. 2, June
    2007, pp. 2154-2157.
    [18] P. Kundur, Power System Stability and Control, New York:
    McGraw-Hill, 1994.
    272
    [19] P. C. Krause, Analysis of Electric Machinery, New York:
    McGraw-Hill, 1986.
    [20] P. M. Anderson and A. A. Fouad, Power System Control and
    Stability, Iowa: The Iowa State University Press Ames, 1977.
    [21] 劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電
    機工程學系碩士論文,民國九十四年六月。
    [22] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分
    析,國立成功大學電機工程學系碩士論文,民國九十五年六月。
    [23] 王國華,風力感應發電機經高壓直流傳輸線併聯市電之研究,
    國立成功大學電機工程學系碩士論文,民國九十六年六月。
    [24] 黃偉,虛功補償元件應用於風場之特性分析,國立成功大學電
    機工程學系碩士論文,民國九十六年六月。
    [25] 劉昌煥,交流電機控制:向量控制與直接轉矩控制原理,台灣東
    華書局股份有限公司,民國九十二年五月。
    [26] 湯雙清,飛輪儲能技術及應用,華中科技大學出版社,民國九
    十六年九月。

    下載圖示 校內:2011-08-26公開
    校外:2013-08-26公開
    QR CODE