| 研究生: |
盧志榮 Lu, Zhi-Rong |
|---|---|
| 論文名稱: |
飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究 Power Flow Control and Stability Analysis of Wind Power Generation Systems Using a Flywheel Energy-Storage System |
| 指導教授: |
王醴
Wang, Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 293 |
| 中文關鍵詞: | 風場 、飛輪儲能系統 、感應發電機 、穩定度 |
| 外文關鍵詞: | stability., induction generator, flywheel energy-storage system, wind farm |
| 相關次數: | 點閱:101 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文係以聚集等效風場經由傳輸線並聯市電架構
下,比較含與不含飛輪儲能系統之穩定度、穩態及動態做為
研究目標。在三相平衡系統下採用交直軸等效電路模型,分
別建立風、風渦輪機、感應發電機以及飛輪儲能系統等之模
型,並推導其數學模型來完成整體動態方程式。在穩態方
面,則分別對不同風速及變動飛輪儲能系統之控制參數等量
對系統特性之影響做一詳細討論。在動態研究方面,完成轉
矩干擾、市電端電壓下降及變動風速等模擬。由模擬結果顯
示,飛輪儲能系統確實能夠有效改善風場在變動風速及干擾
下之動態特性。
This thesis presents the analyzed results of stability, steady state, and
dynamics of an equivalent aggregated wind farm (WF) connected to a
utility grid through a transmission line with and without a flywheel
energy-storage system (FESS). The d-q axis equivalent-circuit model is
employed to establish the models for wind, wind turbine, induction
generator, and the FESS to derive the complete dynamic equations of the
studied system under three-phase balanced loading conditions.
Steady-state performance of the studied system under different wind
speeds and various control parameters of the FESS are examined.
Dynamic simulations of the studied system subject to torque disturbance,
voltage drop of utility grid, and variable wind speeds are also
implemented. It can be concluded from the simulation results that the
proposed FESS can effectively improve the performance of the studied
WF under disturbance conditions and variable wind speeds.
[1] J. Zhang, Z. Chen, L. Cai, and Y. Zhao, “Flywheel energy storage
system design for distribution network,” IEEE Power Engineering
Society Winter Meeting, vol. 4, January 2000, pp. 2619-2623.
[2] R. S. Weissbach, G. G. Karady, and R. G. Farmer, “A combined
uninterruptible power supply and dynamic voltage compensator
using a flywheel energy storage system,” IEEE Transactions on
Power Delivery, vol. 16, no. 2, April 2001, pp. 265-270.
[3] R. Cardenas, R. Pena, G. Asher, and J. Clare, “Control strategies for
enhanced power smoothing in wind energy systems using a
flywheel driven by a vector-controlled induction machine,” IEEE
Transactions on Industrial Electronics, vol. 48, no. 3, June 2001, pp.
625-635.
[4] H. Akagi and H. Sato, “Control and performance of a doubly-fed
induction machine intended for a flywheel energy storage system,”
IEEE Transactions on Power Electronics, vol. 17, no. 1, January
2002, pp. 109-116.
[5] R. Hebner, J. Beno, and A. Walls, “Flywheel batteries come around
again,” IEEE Spectrum, vol. 39, no. 4, April 2002, pp. 46-51.
[6] R. Cardenas, R. Pena, G. Asher, and J. Clare, “Power smoothing in
wind generation systems using a sensorless vector controlled
induction machine driving a flywheel,” IEEE Transactions on
Energy Conversion, vol. 19, no. 1, March 2004, pp. 206-216.
[7] B. H. Kenny, P. E. Kascak, R. Jansen, T. Dever, and W. Santiago,
“Control of a high-speed flywheel system for energy storage in
space applications,” IEEE Transactions on Industry Applications,
vol. 41, no. 4, July/August 2005, pp. 1029-1038.
[8] J. Zhang, “Research on flywheel energy storage system using in
power network,” IEEE Power Electronics and Drives Systems
Conference, vol. 2, November 2005, pp. 1344-1347.
[9] M. H. Wang and H. C. Chen, “Transient stability control of
multimachine power systems using flywheel energy injection,” IEE
Proceeding-Generation Transmission and Distribution, vol. 152, no.
5, September 2005, pp. 589-596.
271
[10] J. L. S. Neto, R. D. Andrade, L. G. B. Rolim, A. C. Ferreira, G. G.
Sotelo, and W. Suemitsu, “Experimental validation of a dynamic
model of a SRM used in superconducting bearing flywheel energy
storage system,” IEEE International Symposium on Industrial
Electronics, vol. 3, July 2006, pp. 2492-2497.
[11] G. Li, S. Cheng, J. Wen, Y. Pan, and J. Ma, “Power system stability
enhancement by a double-fed induction machine with a flywheel
energy storage system,” IEEE Power Engineering Society General
Meeting, vol. 18, no. 22, June 2006, pp. 1-7.
[12] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler,
“Power smoothing using a flywheel driven by a switched reluctance
machine,” IEEE Transactions on Industrial Electronics, vol. 53, no.
4, June 2006, pp. 1086-1093.
[13] S. Samineni, B. K. Johnson, H. L. Hess, and J. D. Law, “Modeling
and analysis of a flywheel energy storage system for voltage sag
correction,” IEEE Transactions on Industry Applications, vol. 42,
no. 1, January/February 2006, pp. 42-52.
[14] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu,
“Control and performance evaluation of a flywheel energy-storage
system associated to a variable-speed wind generator,” IEEE
Transactions on Industrial Electronics, vol. 53, no. 4, June 2006, pp.
1074-1085.
[15] W. Li and G. Joos, “Comparison of energy storage system
technologies and configurations in a wind farm,” IEEE Power
Electronics Specialists Conference, vol. 17, no. 21, June 2007, pp.
1280-1285.
[16] R. F. Thelen, A. Gattozzi, D. Wardell, and A. Williams, “A 2-MW
motor and ARCP drive for high-speed flywheel,” IEEE Applied
Power Electronics Conference, February/March 2007, pp.
1690-1694.
[17] R. de Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. da
Silva Neto, R. M. Stephan, W. I. Suemitsu, and R. Nicolsky,
“Flywheel energy storage system description and tests,” IEEE
Transactions on Applied Superconductivity, vol. 17, no. 2, June
2007, pp. 2154-2157.
[18] P. Kundur, Power System Stability and Control, New York:
McGraw-Hill, 1994.
272
[19] P. C. Krause, Analysis of Electric Machinery, New York:
McGraw-Hill, 1986.
[20] P. M. Anderson and A. A. Fouad, Power System Control and
Stability, Iowa: The Iowa State University Press Ames, 1977.
[21] 劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電
機工程學系碩士論文,民國九十四年六月。
[22] 林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分
析,國立成功大學電機工程學系碩士論文,民國九十五年六月。
[23] 王國華,風力感應發電機經高壓直流傳輸線併聯市電之研究,
國立成功大學電機工程學系碩士論文,民國九十六年六月。
[24] 黃偉,虛功補償元件應用於風場之特性分析,國立成功大學電
機工程學系碩士論文,民國九十六年六月。
[25] 劉昌煥,交流電機控制:向量控制與直接轉矩控制原理,台灣東
華書局股份有限公司,民國九十二年五月。
[26] 湯雙清,飛輪儲能技術及應用,華中科技大學出版社,民國九
十六年九月。