研究生: |
黃郁庭 Huang, Yu-Ting |
---|---|
論文名稱: |
以化學置換反應製備金屬銅、鎳及其合金之研究 A Novel Method to Prepare Cu, Ni and Cu-Ni Alloys by Chemical Replacement Reaction |
指導教授: |
李文熙
Lee, Wen-Hsi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | 化學置換法 、鋁 、銅 、鎳 、銅鎳合金 |
外文關鍵詞: | Chemical replacement reaction, Al, Cu, Ni, Cu-Ni alloy |
相關次數: | 點閱:92 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銅鎳合金系統擁有優異的抗腐蝕能力,被廣泛的應用於海洋工程中;此外,在部分的核電工程中也可以發現它的蹤跡。當銅鎳比接近1時,銅鎳合金會有最小的電阻溫度係數(Temperature Coefficient of Resistance, TCR),因此近幾年亦被積極的作為薄膜電阻元件的材料。
傳統的合金製備方法需要在極高的溫度下將金屬熔煉後混和,其成本非常的高。本研究則利用燒結後的鋁膏作為化學置換的反應層,以沉積金屬銅與鎳的薄膜,最後以退火程序使銅層與鎳層相互擴散,形成銅鎳合金相,以期降低製程成本。從實驗中我們可以發現,當銅置換發生在40℃並浸泡15分鐘到30分鐘之間,配合鎳置換在80℃並浸泡15分鐘時,會有最接近1的銅鎳比出現。另外,我們亦能從退火處理後的試片觀察到銅層與鎳層相互擴散的情形,且其TCR均有顯著的下降。
Copper-Nickel alloys system (Cu-Ni alloys system) performs a great ability in corrosion, and is applied widely in marine engineering; moreover, it is used in part of nuclear power engineering. When the composition ratio of Cu and Ni in Cu-Ni alloys system is around 1:1, there is a lowest TCR. As a result, Cu-Ni alloy has been a selected material used in resistive components.
Traditional method in preparing alloys needs an extremely high temperature for melting and mixing the metals that costs expensively. Therefore, we used the sintered aluminum (Al) paste as a chemical replacement layer to deposit a Cu layer and a Ni layer. After an annealing treatment, Cu atoms and Ni atoms would diffuse to each other to form Cu-Ni alloy. By this method, we might reduce the cost in fabricating the alloys.
The results in this study showed that when Cu substituted for Al where the specimen was immersed between 15 minutes at 40℃, and Ni replaced Al by soaking the specimen for 15 minutes at 80℃, the composition ratio of Cu and Ni would be approximately 1:1. Furthermore, after an annealing treatment, we could observe the diffusion of Cu atoms and Ni atoms by energy-dispersive spectrometer (EDS) and X-ray diffractometer (XRD); also, we would see a dramatic decrease of TCR in the specimen.
[1] Hongyan Wu, et al. “The semi-conductor property and corrosion resistance of passive film on electroplated Ni and Cu–Ni alloys.” Journal of Electroanalytical Chemistry, 663, pp. 59-66, 2011.
[2] Aïda Varea, et al. “Mechanical properties and corrosion behaviour of nanostructured Cu-rich CuNi electrodeposited films.” Int. J. Electrochem. Sci., 7, pp. 1288-1302, 2012.
[3] Waheed A. Badawy, Khaled M. Ismail, and Ahlam M. Fathi. “Effect of Ni content on the corrosion behavior of Cu–Ni alloys in neutral chloride solutions.” Electrochimica Acta, 50, pp. 3603-3608, 2005.
[4] Veena Subramanian, et al. “Corrosion of cupronickel alloy in permanganate under acidic condition.” Corrosion Science, 49, pp. 620-636, 2007.
[5] “Copper-Nickel alloys: properties, processing, applications.” Internet: www.copper.org/applications/marine/cuni/properties/DKI_booklet.html, [Jul. 13,2017].
[6] William D. Callister and David G. Rethwisch. “Applications and processing of metal alloys” in Materials Science and Engineering, 8th ed., Asia: Wiley, 2011, pp. 406-416.
[7] Nurul Khalidah Yusop, et al. “Structural and electrical characterizations of CuNi thin film resistors.” Procedia Chemistry, 19, pp. 619-625, 2016.
[8] Masami Ishikawa, et al. “Preparation of thin film resistors with low resistivity and low TCR by heat treatment of multilayered Cu/Ni deposits.” Surface and Coatings Technology, 110, pp. 121-127, 1998.
[9] Sung-Gi Hur, et al. “The structural and electrical properties of CuNi thin-film resistors grown on AlN substrates for Ⅱ-type attenuator application.” Journal of The Electrochemical Society, 152(6), pp. G472-G476, 2005.
[10] John E. McMurry and Robert C. Fay. “Reactions in aqueous solution” in Chemistry, 6th ed., USA: Prentice Hall, 2012, pp. 124-131.
[11] William D. Callister and David G. Rethwisch. “Imperfections in solids” in Materials Science and Engineering, 8th ed., Asia: Wiley, 2011, pp. 93-95.
[12] Reza Abbaschian, Lara Abbaschian and Robert E. Reed-Hill. “Solid solutions” in Physical Metallurgy Principles, 4th ed., USA: Cengage Learning, 2010, pp. 261-267.
[13] William D. Callister and David G. Rethwisch. “Phases Diagrams” in Materials Science and Engineering, 8th ed., Asia: Wiley, 2011, pp. 287-298.
[14] William D. Callister and David G. Rethwisch. “Diffusion” in Materials Science and Engineering, 8th ed., Asia: Wiley, 2011, pp. 123-126.
[15] Gordon Roberts. “History's influence on screen printing's future.” Internet: www.screenweb.com/content/historys-influence-screen-printings-future, May 4, 2006 [May 3, 2017].
[16] “Fine line screen printing of thick film pastes on Silicon Solar Cells.” Internet: www.azom.com/article.aspx?ArticleID=10079, Oct. 7, 2013 [May 3, 2017].
[17] 羅聖全。“科學基礎研究之重要利器—掃描式電子顯微鏡(SEM)”。科學研習,52-5,pp. 2-4,2013。
[18] 何政恩、高振宏。“SEM/EDS的原理與操作應用之簡介”。化工技術,119,pp. 102-115,2003。
[19] Prashant Mudgal, et al. “Characteristic radiation.” Internet: radiopaedia.org/articles/characteristic-radiation, [May 9, 2017].
[20] “Characteristic X-rays.” Internet: www.ammrf.org.au/myscope/analysis/eds/xraygeneration/characteristic/, [May 9, 2017].
[21] Pradyot Patnaik. “X-ray methods” in Dean's Analytical Chemistry Handbook, 2nd ed., USA: McGraw-Hill Education, 2004, p. 9.20.
[22] 鄭信民、林麗娟。“X光繞射應用簡介”。工業材料雜誌,181,pp. 100-108,2002。
[23] “X-ray diffraction—XRD.” Internet: particle.dk/methods-analytical-laboratory/xrd-analysis/, [May 11, 2017].
[24] “X-ray powder diffraction (XRD).” Internet: http://www.eag.com/x-ray-diffraction-xrd/, [May 11, 2017].
[25] 李珠。“感應耦合電漿質譜儀技術及其在材料分析上的應用”。工業材料雜誌,181,pp. 87-93,2002。
[26] Ruth E. Wolf, “What is ICP-MS? ... and more importantly, what can it do?” Internet: crustal.usgs.gov/laboratories/icpms/intro.html, Mar. 2005 [May 11, 2017].