| 研究生: |
鐘永傑 Zhong, Yong-Jie |
|---|---|
| 論文名稱: |
新型金屬誘發玻璃基板上成長低溫多晶矽薄膜技術應用於太陽電池的研究 A Novel Metal Induced Crystallization of Amorphous Silicon on Glass Substrate Technology for Low Temperature Poly-Silicon Solar Cell Applications |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 低溫多晶矽 、太陽能電池 |
| 外文關鍵詞: | Metal Induced Crystallization, MIC, Poly-Silicon, Poly-Si, Solar cell |
| 相關次數: | 點閱:103 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統使用鎳或鋁金屬誘發結晶(MIC)低溫多晶矽薄膜的製程時間長且熱消耗(thermal budget)也高較不適合在一般玻璃基板上製造低成本大面積的太陽電池。本論文提出一種新型金屬誘發結晶技術可在一般玻璃基板上成長低溫(<200oC)多晶矽薄膜且無需長時間的高溫回火製程。吾人並使用該低溫多晶矽薄膜成功製造出太陽能電池,來證實本技術的可行性。
本技術係使用溅鍍沈積氧化鋅摻雜鋁(ZnO:Al)薄膜於長有銦錫氧化物(ITO)的玻璃基板上,並以0.5%(volume ratio)的鹽酸液蝕刻成粗糙化的表面。然後,以PECVD系統在基板溫度200oC下沈積晶粒為0.5-1µm的低溫多晶矽薄膜。經過多種物理與光電特性量測包括SEM、XRD、FTIR以及RAMAN測試,證實該低溫多晶矽薄膜的成長係先由沈積非晶矽薄膜,然後再經銦矽合金共融(eutectic transformation)及銦金析出,最後轉換成為多晶矽薄膜。故本法也是屬於金屬誘發結晶技術的一種。比起傳統金屬誘發結晶法,本技術有熱消耗低,金屬污染低,不需額外退火製程與高結晶度的優點。
經由實際使用該低溫多晶矽薄膜在玻璃基板上成功製造出太陽能電池證實本技術的可行。太陽能電池的主要特性為Voc=0.66V, Jsc=2.96mA, FF=44% and 轉換效率=1.56%。此外,我們並發現粗糙的氧化鋅鋁層可提升多晶矽薄膜晶粒大小及減少表面的反射 有助於太陽能電池特性的提升。
The thermal budget and process time of the traditional metal induced crystallization (MIC) technology using Ni metal and a few hours 500-600 oC annealing are still higher and longer, respectively for preparing a low cost solar cell on glass substrate. In this thesis, we develop a new MIC technology with temperature can be lowered to 200 oC and without the long time and high temperature annealing.
The new MIC technology includes sputtering an AZO thin film on an ITO glass substrate firstly. Then the AZO film is etched with 0.5% (volume ratio) HCL solution to form a textural surface. Finally, deposit a-Si film on the AZO at 200 oC by a PECVD system. During the deposition, the thin film is also transformed from an amorphous structure to a poly one through Si-In eutectic transformation, In ion precipitation, and re-crystallization. Besides, if a textural AZO is used; we find grain size of the poly film is also enhanced significantly. We use SEM, XRD, FTIR, and RAMAN to characterize physical and photoelectric properties of films. Compared to the conventional MIC method, the developed new method has the advantage of lower temperature(less 200 oC), less thermal budget, low metal contamination, higher Xc (crystalline volume fraction), and without an extra annealing process.
Furthermore, we successfully fabricate the low temperature poly thin film solar cells prepared by the developed method to show its applicability. The initial performances of solar cell is Voc=0.66V, Jsc=2.96mA, FF=44% and conversion efficiency=1.56% under AM1.5G simulated spectrum of sunlight.
[1] D.L. Staebler and C.R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si,” Applied Physics Letters, p. 292, vol. 31, 1977.
[2] M. Stutzmann, W.B. Jackson, and C.C. Tsai, “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study,” Physical Review B, vol. 32, p. 23, Jul. 1985.
[3] A. Misumi, K. Sunahara, H. Tanabe, and M. Kumada, ” Evaporated polycrystalline-silicon thin-film transistors on glass,” IEEE UEDM Tech. Digest, pp.305, 1981.
[4] M. Matsui, “Low-temperature formation of polycrystalline silicon films by molecular beam deposition,” Journal of Applied Physics, vol. 53, p. 995, 1982.
[5] D.B. Meakin, P.A. Coxon, P. Migliorato, J. Stoemenos, and N.A. Economou, “High-performance thin-film transistors from optimized polycrystalline silicon films,” Applied Physics Letters, vol. 50, p. 1894, 1987.
[6] W. Schmolla, J. Diefenbach, G. Blang, W. Senske, ” POLY-SILICON DEPOSITION BY EVAPORATION FOR TFTs,” Mat. Res. Symp. Proc., vol.106, pp.329, 1988.
[7] H. F. Sterling and R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge,” Solid-State Electronics, Volume 8, Issue 8, pp. 653, August 1965.
[8] P. Roca i Cabarrocas, ”Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films”, Journal of Non-Crystalline Solids 266-269 31-37 (2000).
[9] R.C. Chittick, J.H. Alexander, and H.F. Sterling, “The Preparation and Properties of Amorphous Silicon,” Journal of The Electrochemical Society, vol. 116, pp. 77-81, Jan. 1969.
[10] W.E. Spear and P.L. Comber, “Electronic properties of substitutionally doped amorphous Si and Ge,” Philosophical Magazine, vol. 33, p. 935, 1976.
[11] W. E. Spear, P. G. LeComber, S. Kinmond, M. H. Brodsky, “Amorphous Si p-n Junction,” Applied Physics Letters, Vol. 28, no. 2, pp. 105, Jan. 1976.
[12] X. L. Jiang, Y. L. He, H. L. Zhu, “The effect of passivation of boron dopants by hydrogen in nano-crystalline and micro-crystalline silicon films”, J. Phys.: Condens. Matter 6 713-718,1996.
[13] H. Kuriyama, T. Nohda, Y. Aya, T. Kuwahara, K. Wakisaka, S. Kiyama, and S. Tsuda, “Comprehensive Study of Lateral Grain Growth in Poly-Si Films by Excimer Laser Annealing and Its Application to Thin Film Transistors,” Japanese Journal of Applied Physics, vol. 33, pp. 5657-5662, 1994.
[14] Kazutomo Goshima, Hirotaka Toyoda, Tetsuya Kojima, Mikihiko Nishitani, Masatoshi Kitagawa, Hiroshi Yamazoe, and Hideo Sugai, “Lower Temperature Deposition of Polycrystalline Silicon Films from a Modified Inductively Coupled Silane Plasma,” Japanese Journal of Applied Physics, vol. 38, pp. 3655-3659, 1999.
[15] R.E.I. Schropp, B. Stannowski, A.M. Brockhoff, P.A.T.T. van Veenendaal and J.K. Rath, “HOT WIRE CVD OF HETEROGENEOUS AND POLYCRYSTALLINE SILICON SEMICONDUCTING THIN FILMS FOR APPLICATION IN THIN FILM TRANSISTORS AND SOLAR CELLS,” Mat. Res. Soc. Symp. Proc., vol. 609, pp.A31.1, 2000.
[16] H. Matsumura, “Formation of Silicon-Based Thin Films Prepared by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Japanese Journal of Applied Physics, vol. 37, pp. 3175-3187. , 1998
[17] J. Rath, H. Meiling, and R. Schropp, “Purely Intrinsic Poly-silicon Films for n-i-p Solar Cells,” Japanese Journal of Applied Physics, vol. 36, pp. 5436-5443, 1997.
[18] T. Baba, T. Matsuyama, T. Sawada, T. Takahama, K. Wakisaka, S. Tsuda, S. Nakano, “Polycrystalline silicon thin-film solar cell prepared by the solid phase crystallization (SPC) method,” 1994 IEEE, First WCPEC, Dec. 5-9, Hawaii, pp.1315-1318, 1994.
[19]T. Matuyama, T. Baba, T. Takahama, S. Tshda, and S. Nakano: Technical Digest of Internal PVSEC-7, Nagoya, p.447, 1993.
[20]T. Matusuyama, K. Wakisaka, M. Kameda, M. Tanaka, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, Preparation of High-Quality n-Type Poly-Si Films by the Solid Phase Crystallization(SPC) Method , Jpn. J. Appl. Phys., Vol.29, pp.2327-2331
[21] S.Y. Yoon, J.Y. Oh, C.O. Kim, and J. Jang, “Low temperature solid phase crystallization of amorphous silicon at 380°C,” Journal of Applied Physics, vol. 84, p. 6463, 1998.
[22] J. Olivares, A. Rodríguez, J. Sangrador, T. Rodríguez, C. Ballesteros, and A. Kling, “Solid-phase crystallization of amorphous SiGe films deposited by LPCVD on SiO2 and glass,” Thin Solid Films, vol. 337, pp. 51-54, Jan. 1999.
[23] K.N. Tu, “Selective growth of metal-rich silicide of near-noble metals,” Applied Physics Letters, vol. 27, p. 221, 1975.
[24] M.S. Ashtikar and G.L. Sharma, “Silicide mediated low temperature crystallization of hydrogenated amorphous silicon in contact with aluminum,” Journal of Applied Physics, vol. 78, p. 913, 1995.
[25] Y. Masaki, T. Ogata, H. Ogawa, and D.I. Jones, “Kinetics of solid phase interaction between Al and a-Si:H,” Journal of Applied Physics, vol. 76, p. 5225, 1994.
[26] S.F. Gong, H.T.G. Hentzell, and A.E. Robertsson, “Initial solid-state reactions between crystalline Sb and amorphous Si thin films,” Journal of Applied Physics, vol. 64, p. 1457, 1988.
[27] L. Hultman, A. Robertsson, H.T.G. Hentzell, I. Engström, and P.A. Psaras, “Crystallization of amorphous silicon during thin-film gold reaction,” Journal of Applied Physics, vol. 62, p. 3647, 1987.
[28] K. Lee, Y. Fang, and S. Fan, “Au metal-induced lateral crystallisation (MILC) of hydrogenated amorphous silicon thin film with very low annealing temperature and fast MILC rate,” Electronics Letters, vol. 35, pp. 1108-1109, Jun. 1999.
[29] J. Hyeok Kim and J. Yong Lee, “Al-Induced Crystallization of an Amorphous Si Thin Film in a Polycrystalline Al/Native SiO2/Amorphous Si Structure,” Japanese Journal of Applied Physics, vol. 35, pp. 2052-2056, 1996.
[30] O. Nast, T. Puzzer, L.M. Koschier, A.B. Sproul, and S.R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature,” Applied Physics Letters, vol. 73, p. 3214, 1998.
[31] G. Radnoczi, A. Robertsson, H.T.G. Hentzell, S.F. Gong, and M. Hasan, “Al induced crystallization of a-Si,” Journal of Applied Physics, vol. 69, p. 6394, 1991.
[32] O. Nast and A.J. Hartmann, “Influence of interface and Al structure on layer exchange during aluminum-induced crystallization of amorphous silicon,” Journal of Applied Physics, vol. 88, p. 716, 2000.
[33] M. Shahidul Haque, H.A. Naseem, and W.D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperatures,” Journal of Applied Physics, vol. 75, p. 3928, 1994.
[34] S. Lee, Y. Jeon, and S. Joo, “Pd induced lateral crystallization of amorphous Si thin films,” Applied Physics Letters, vol. 66, p. 1671, 1995.
[35] S. Lee, B. Lee, T. Kim, and S. Joo, “Pd[sub 2]Si-assisted crystallization of amorphous silicon thin films at low temperature,” Journal of Applied Physics, vol. 85, p. 7180, 1999.
[36] Z. Jin, G.A. Bhat, M. Yeung, H.S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” Journal of Applied Physics, vol. 84, p. 194, 1998.
[37] S.Y. Yoon, K.H. Kim, C.O. Kim, J.Y. Oh, and J. Jang, “Low temperature metal induced crystallization of amorphous silicon using a Ni solution,” Journal of Applied Physics, vol. 82, p. 5865, 1997.
[38] S.Y. Yoon, S.J. Park, K.H. Kim, and J. Jang, “Metal-induced crystallization of amorphous silicon,” Thin Solid Films, vol. 383, pp. 34-38, Feb. 2001.
[39] M. Miyasaka, K. Makihira, T. Asano, E. Polychroniadis, and J. Stoemenos, “In situ observation of nickel metal-induced lateral crystallization of amorphous silicon thin films,” Applied Physics Letters, vol. 80, p. 944, 2002.
[40] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, “High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film,” IEEE Transactions on Electron Devices, vol. 36, pp. 2868-2872, Dec. 1989.
[41] H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano, and Y. Kuwano, “Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-Performance Poly-Si Thin Film Transistor,” Japanese Journal of Applied Physics, vol. 30, pp. 3700-3703, 1991.
[42] T. Sameshima, M. Hara, and S. Usui, “XeCl Excimer Laser Annealing Used to Fabricate Poly-Si TFT's,” Japanese Journal of Applied Physics, vol. 28, pp. 1789-1793, 1989.
[43] M. Miyasaka and J. Stoemenos, “Excimer laser annealing of amorphous and solid-phase-crystallized silicon films,” Journal of Applied Physics, vol. 86, p. 5556, 1999.
[44] P. Lengsfeld, N.H. Nickel, and W. Fuhs, “Step-by-step excimer laser induced crystallization of a-Si:H,” Applied Physics Letters, vol. 76, p. 1680, 2000.
[45] O. Nast, T. Puzzer, L.M. Koschier, A.B. Sproul, and S.R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature,” Applied Physics Letters, vol. 73, p. 3214, 1998.
[46] R. Banerjee, S. Ray, N. Basu, A.K. Batabyal, and A.K. Barua, “Degradation of tin-doped indium-oxide film in hydrogen and argon plasma,” Journal of Applied Physics, vol. 62, p. 912, 1987.
[47] B. Drevillon, S. Kumar, P. Roca i Cabarrocas, and J.M. Siefert, “In situ investigation of the optoelectronic properties of transparent conducting oxide/amorphous silicon interfaces,” Applied Physics Letters, vol. 54, p. 2088, 1989.
[48] O. Kuboi, “Degradation of ITO Film in Glow-Discharge Plasma,” Japanese Journal of Applied Physics, vol. 20, pp. L783-L786, 1981.
[49] R.W. Olesinski, N. Kanani, and G.J. Abbaschian, “The In- Si (Indium-Silicon) system,” Journal of Phase Equilibria, vol. 6, pp. 128–130, 1985.
[50] Massalski T B 1990 Binary Alloy Phase Diagrams 2nd edn (Metals Park, OH: American Society for Metals)
[51] Fujiwara H.[1], Kondo M., and Matsuda A., “Microcrystalline silicon nucleation sites in the sub-surface of hydrogenated amorphous silicon,” Surface Science, vol. 497, pp. 333-340, Jan. 2002.
[52] M.H. Brodsky, M. Cardona, and J.J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering,” Physical Review B, vol. 16, p. 3556, Oct. 1977.
[53] N. Maley, “Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys,” Physical Review B, vol. 46, p. 2078, Jul. 1992.
[54] M.B. Tzolov, N.V. Tzenov, and D.I. Dimova-Malinovska, “Analysis of the infrared transmission data of amorphous silicon and amorphous silicon alloy films,” Journal of Physics D: Applied Physics, vol. 26, pp. 111–118, 1993.
[55] A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon,” Physical Review B, vol. 45, p. 13367, Jun. 1992.
[56] J.D. Ouwens and R.E.I. Schropp, “Hydrogen microstructure in hydrogenated amorphous silicon,” Physical Review B, vol. 54, p. 17759, Dec. 1996.
[57] R.E.I. Schropp and M. Zeman, Amorphous and microcrystalline silicon solar cells: modeling, materials, and device technology, Springer, 1998.
[58] O. Kluth, B. Rech, L. Houben, S. Wieder, G. Schöpe, C. Beneking, H. Wagner, A. Löffl, and H.W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells,” Thin Solid Films, vol. 351, pp. 247-253, Aug. 1999.
[59] H. Sato, T. Minami, Y. Tamura, S. Takata, T. Mouri, and N. Ogawa, “Aluminium content dependence of milky transparent conducting ZnO:Al films with textured surface prepared by d.c. magnetron sputtering,” Thin Solid Films, vol. 246, pp. 86-91, Jun. 1994.
[60] T. Sameshima, M. Hara, and S. Usui, “XeCl Excimer Laser Annealing Used to Fabricate Poly-Si TFT's,” Japanese Journal of Applied Physics, vol. 28, pp. 1789-1793, 1989.
[61] C. Lin, Y. Fang, S. Chen, C. Lin, T. Chou, S. Hwang, J. Hwang, and K. Lin, “Preferential coalescence of nanocrystalline silicon on different film substrates,” Journal of Non-Crystalline Solids, vol. 352, pp. 44-50, Jan. 2006.
[62] Antonio Luque and Steven Hegedus, “Handbook of Photovoltaic Science and Engineering,” Wiley, 2003
[63] D.K. Schroder, Semiconductor material and device characterization, John Wiley and Sons, pp.644, 2006.
[64] JI Goldstein, DE Newbury, P. Echlin, DC Joy, C. Fiori, E. Lifshin, “SE Microscopy, XR Microanalysis,” Plenum Press, 2nd ed., New York, 1984
[65] D.K. Schroder, Semiconductor material and device characterization, John Wiley and Sons, 2006.
[66] G. Yue, J.D. Lorentzen, J. Lin, D. Han, and Q. Wang, “Photoluminescence and Raman studies in thin-film materials: Transition from amorphous to microcrystalline silicon,” Applied Physics Letters, vol. 75, p. 492, 1999.
[67] E. Bustarret, M.A. Hachicha, and M. Brunel, “Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy,” Applied Physics Letters, vol. 52, p. 1675, 1988.
[68] G. Viera, S. Huet, and L. Boufendi, “Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy,” Journal of Applied Physics, vol. 90, p. 4175, 2001.
校內:2015-07-12公開