| 研究生: |
洪培豪 Hung, Pei-Hao |
|---|---|
| 論文名稱: |
金屬中間層與晶向對氮化鋁互補式電阻切換記憶體效應與機制之探討 Investigations of the Effects and Mechanisms of Metal Interconnection Layer and Orientation of AlN-based Complementary Resistive Switches |
| 指導教授: |
朱聖緣
Chu, Sheng-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 氮化鋁 、電阻式記憶體 、互補式電阻切換記憶體 、中間層 、可重複操作性 |
| 外文關鍵詞: | AlN, RRAM, complementary resistive switch, interconnection layer, endurance |
| 相關次數: | 點閱:111 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
互補式電阻切換記憶體(Complementary Resistive Switch, CRS)由於其在低電壓時始終保持高阻態的特性,因此目前被認為是交錯式被動陣列(Crossbar Passive Array)中電路產生潛行電流的最佳解決方案。然而其可重複操作性卻是目前最大的挑戰(<100次)。本論文將試著透過改變中間層(Interconnection Layer)的金屬以及絕緣層氮化鋁的晶向以改善元件的可靠度(>500次)。
在本實驗第一部分,我們改變了CRS元件的中間層金屬,分別為Ti、Cu和Ag。實驗發現,以Ag為中間層可以有效增加元件的可重複操作性達到500次,並且具有最低的操作電壓。
在本實驗第二部分,我們試圖利用不同晶向氮化鋁的雙極性電阻切換記憶體驗證製成CRS的先決條件|Vreset|>|Vset|/2,並透過實驗證實非晶態氮化鋁BRS元件不符合先決條件,因此無法表現出完整CRS元件特性。最後探討了氮化鋁電阻式記憶體的導電機制,發現在低阻態時主要為歐姆傳導,而在高阻態時則是空間電荷限制電流為主要機制。
In this study, we change the metal interconnection layer (Ti, Cu, and Ag) of AlN-based complementary resistive switches (CRS), and we find that the devicesused Ag as the interconnection layer can effectively increase the endurance up to 500 times and have the lowest operating voltage. In addition, the characteristics of CRS with different orientation AlN films and the switching mechanism are also investigated in this thesis. It is found that the mechanism in the low resistance state (LRS) exhibits an ohmic conduction behavior with a slope of 1.00. However, the conduction mechanism in the high resistance state (HRS) is totally different from the one in LRS. The charge transport behavior completely conforms to a typical space charge limited current (SCLC).
[1] 李明道, “各式記憶體簡介,”奈米通訊, vol. 22, no.4, pp.2-6, 2015.
[2] Chen, An, “A review of emerging non-volatile memory (NVM) technologies andapplications,” Solid-State Electronics, vol. 125, pp. 25-38, 2016.
[3] S. I. Association,“International technology roadmap for semiconductors,” International Technology Roadmap for Semiconductors, 2006.
[4] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,” J. Appl. Phys., vol. 33, 2669, no. 9,pp. 1962.
[5] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,” Nature Mater., vol. 6, pp. 833-840, 2007.
[6] Pan, F., S. Gao, C. Chen, C. Song and F. Zeng, “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Materials Science and Engineering: R: Reports, vol. 83, pp. 1-59, 2014.
[7] Jo, S. H., K. H. Kim, and W. Lu, “High-density crossbar array based on Si memristive system,” Nano Lett, vol.9, no.2, pp.870-874, 2009.
[8] Q. Xia, J. J. Yang, W. Wu, X. Li, and R. S. Williams, “Self-aligned memristor cross-point arrays fabricated with one nanoimprint lithography step,” Nano Lett, vol.10, pp.2909-2914, 2010.
[9] B. S. Kang, S. -E. Ahn, M. -J. Lee, G. Stefanovich, K. H. Kim, W. X. Xianyu, C. B. Lee, Y. Park, I. G. Baek, and B. H. Park, “High‐current‐density CuO x/InZnOx thin‐film diodes for cross‐Point memory applications,”Advenced Materials, vol.20, pp.3066, 2008.
[10] M. -J. Lee, Y. Park, D. -S. Suh, E. -H. Lee, S. Seo, D. -C. Kim, R. Jung, B. -S. Kang, S. -E. Ahn, C. B. Lee, D. H. Seo, Y. -K. Cha, I. -K. Yoo, J. -S. Kim, and B. H. Park, “Two series oxide resistors applicable to high speed and high density nonvolatile memory,” Advenced Materials, vol.19, pp.3919, 2007.
[11] Yuchao Yang, Patrick Sheridan, and Wei Lu, “Complementary resistive switching in tantalum oxide-based resistive memory devices,” Applied Physics Letters, vol.100, no.20, pp.203112, 2012.
[12] Anne Siemon, Stephan Menzel, Rainer Waser, and Eike Linn, “A complementary resistive switch-based crossbar array adder,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol.5, no.1, pp.64-74, 2015.
[13] 高士,“快閃IC「RRAM」發展動向-非揮發性記憶體明日之星,”零組件雜誌, pp.78-88, 2005.
[14] 鄭佩慈,“鐵電材料隻特性運用,”儀器科學中心簡訊, vol. 68, pp.10-11, 2005.
[15] 廖國孝, “錫摻雜二氧化矽薄膜之電阻式記憶體特性研究,”國立中山大學,碩士論文, 2011.
[16] 葉林秀,李佳謀, 徐明豐, and 吳德和, “磁阻式隨機存取記憶體技術的發展—現在與未來,”物理雙月刊,vol.26, no.4, pp.607-619, 2004.
[17] 莊翔嵐,“超臨界流體處理鎳矽氧化物薄膜在電阻式記憶體之應用研究,”國立高雄應用科技大學, 碩士論文, 2011.
[18] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, vol.11, no.6, pp. 28-36, 2008.
[19] C. Liang, K. Terabe, T. Hasegawa, and M. Aono,“Resistance switching of an individual Ag2S/Ag nanowire heterostructure,” Nanotechnology, vol.18, no.48, 2007.
[20] S. Sze, and K. K. Ng, Physics of semiconductor devices (3rd edition) ,Wiley-Blackwell, 2007.
[21] S. Zaima, T. Furuta, Y. Koide, Y. Yasuda, and M. Lida, “Conduction Mechanism of Leakage Current in Ta2O5 Films on Si Prepared by Lpcvd,” J. Electrochem. Soc., vol. 137, pp. 2876-2879, 1990.
[22] Hao Cheng, Yong Sun, Peter Hing, “Microstructure Evolution of AlN Films Deposited under Various Pressures by RF Reactive Sputtering” Surface and Coating Technology, vol. 166, pp. 231-236, 2003.
[23] Chakraborty, P., S. S. Mahato, T. K. Maiti, M. K. Bera, C. Mahata, S. K. Samanta, A. Biswas, and C. K. Maiti, “Performance Improvement of Flash Memory Using AlN as Charge-Trapping Layer,” Microelectronic Engineering, vol. 86, no. 3, pp. 299-302, 2009.
[24] Zuo, Chengjie, Nipun Sinha, and Gianluca Piazza, “Very High Frequency Channel-Select Mems Filters Based on Self-Coupled Piezoelectric AlN Contour-Mode Resonators,” Sensors and Actuators A: Physical, vol. 160, no. 1, pp. 132-140, 2010.
[25] Song, Xiufeng, Renli Fu, and Hong He. “Frequency Effects on the Dielectric Properties of Aln Film Deposited by Radio Frequency Reactive Magnetron Sputtering,” Microelectronic Engineering, vol. 86, no. 11, pp. 2217-2221, 2009.
[26] Kim, Hee-Dong, Ho-Myoung An, Yujeong Seo, and Tae Geun Kim, “Transparent Resistive Switching Memory Using ITO/AlN/ITO Capacitors,” IEEE Electron Device Letters, vol. 32, no. 8, pp. 1125-27, 2011.
[27] Hee-Dong Kim, Ho-Myoung An, Eui Bok Lee, and Tae Geun Kim, “Stable Bipolar Resistive Switching Characteristics and Resistive Switching Mechanisms Observed in Aluminum Nitride-Based ReRAM Devices,” IEEE Transactions on Electron Devices, vol. 58, pp. 3566-73, 2011.
[28] Chen, Chao, Shuang Gao, Guangsheng Tang, Cheng Song, Fei Zeng, and Feng Pan, “Cu-Embedded Aln-Based Nonpolar Nonvolatile Resistive Switching Memory,” IEEE Electron Device Letters, vol. 33, no. 12, pp. 1711-13, 2012.
[29] Chen, C., S. Gao, G. Tang, H. Fu, G. Wang, C. Song, F. Zeng, and F. Pan, “Effect of Electrode Materials on Aln-Based Bipolar and Complementary Resistive Switching,” ACS Appl Mater Interfaces, vol. 5, no. 5, pp. 1793-9, 2013.
[30] Zhang, Jian, Qilong Zhang, Hui Yang, Huayu Wu, Juehui Zhou, and Liang Hu, “Bipolar Resistive Switching Properties of Aln Films Deposited by Plasma-Enhanced Atomic Layer Deposition,” Applied Surface Science, vol. 315, pp. 110-15, 2014.
[31] Chen, Yiren, Hang Song, Hong Jiang, Zhiming Li, Zhiwei Zhang, Xiaojuan Sun, Dabing Li, and Guoqing Miao, “Reproducible Bipolar Resistive Switching in Entire Nitride AlN/n-GaN Metal-Insulator-Semiconductor Device and Its Mechanism,” Applied Physics Letters, vol.105, no. 19, pp. 193502, 2014.
[32] Zhang, Zhiping, Bin Gao, Zheng Fang, Xinpeng Wang, Yanzhe Tang, Joon Sohn, H. S. Philip Wong, S. Simon Wong, and Guo-Qiang Lo, “All-Metal-Nitride RRAM Devices,” IEEE Electron Device Letters, vol. 36, no.1, pp. 29-31, 2015.
[33] Tseng, Zong-Liang, Lung-Chien Chen, Wan-Ying Li, and Sheng-Yuan Chu, “Resistive Switching Characteristics of Sputtered AlN Thin Films,” Ceramics International, vol. 42, no. 8, pp. 9496-503, 2016.
[34] Tsai, Tsung-Ling, Fa-Shen Jiang, Chia-Hua Ho, Chen-Hsi Lin, and Tseung-Yuen Tseng, “Enhanced Properties in Conductive-Bridge Resistive Switching Memory with Oxide-Nitride Bilayer Structure,” IEEE Electron Device Letters, vol. 37, no. 10, pp. 1284-87, 2016.
[35] RaviPrakash, and DavinderKaur, “Bipolar resistive switching behavior in Cu/AlN/Pt structure for ReRAM application,” Vacuum, vol. 143, pp. 102-105, 2017.
[36] Yong Kim, Min Soo Kim, Hee Ju Yun, Sung Yeon Ryu, and Byung JoonChoi, “Effect of growth temperature on AlN thin films fabricated by atomic layer deposition,” Ceramics International, vol.44, no.14, pp.17447-17425, 2018.
[37] H.-C. Tseng, T.-C. Chang, J -J. Huang, P.-C. Yang, Y.-T. Chen, F.-Y. Jian, S. Sze, and M.-J. Tsai, “Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment,” Applied Physics Letters, vol.99, no.13, pp.132104, 2011.
[38] Myoung-Jae Lee, Chang Bum Lee, Dongsoo Lee, Seung Ryul Lee, Man Chang, Ji Hyun Hur, Young-Bae Kim, Chang-Jung Kim, David H. Seo, Sunae Seo, U-In Chung, In-Kyeong Yoo, and Kinam Kim,“A fast, high-endurance and scalablenon-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayerstructures,” Nature Materials, vol.10, no.8, pp.625, 2011.
[39] Cheng, Hsyi-En, Tien-Chai Lin, and Wen-Chien Chen, “Preparation of [002] oriented AlN thin films by mid frequency reactive sputtering technique,” Thin Solid Films, vol. 425, no. 1, pp. 85-89, 2003.
[40] 劉惠瑜,“以射頻濺鍍製備不同擇優取向之氮化鋁薄膜及其應用於電阻式隨機存取記憶體之研究,”國立成功大學,碩士論文, 2017.
[41] Shiau, Jr-Shiang, Sanjaya Brahma, Chuan-Pu Liu, and Jow-Lay Huang, “Ultraviolet Photodetectors Based on Mgzno Thin Film Grown by RfMagnetron Sputtering,” Thin Solid Films, vol. 620, pp. 170-74, 2016.
[42] Feby Jose, R Ramaseshan, S Dash, S Bera, A K Tyagi and Baldev Raj, “Response of magnetron sputtered AlN films to controlled atmosphere annealing,” Journal of Physics D: Applied Physics, vol.43, no.7, pp.075304, 2010.
[43] Yongheng Zhang, “Characterization of as-received hydrophobic treated AlN powder using XPS,” Journal of Materials Science Letters, vol.21, no.20, pp.1603-1605, 2002.
[44] C. C. Wang, M. C. Chiu, M. H. Shiao, and F. S. Shieua, “Characterization of AlN Thin Films Prepared by Unbalanced Magnetron Sputtering,” Journal of The Electrochemical Society, vol.151, no.10, pp.252-256, 2004.
[45] P.Motamedi, and K.Cadien, “XPS analysis of AlN thin films deposited by plasma enhanced atomic layer deposition,” Applied Surface Science, vol.315, no.1, pp.104-109, 2014.
[46] de Almeida, E. F., F. de Brito Mota, C. M. C. de Castilho, A.Kakanakova-Georgieva, and G. K. Gueorguiev, “Defects in Hexagonal-AlNSheets by First-Principles Calculations,” The European Physical Journal B, vol.85, no.1, pp.48, 2012.
[47] Huang, Yong, Zihan Shen, Ye Wu, Xiaoqiu Wang, Shufang Zhang, XiaoqinShi, and Haibo Zeng, “Amorphous Zno Based Resistive Random Access Memory,” RSC Adv., vol.6, no.22, pp.17867-17872, 2016.
[48] Helmut Mehrer, “Diffusion in Solids,” Springer, 2007.
[49] Sarah Brennan, Andrew P. Warren, K.R. Coffey, Nagraj S Kulkarni, Peter Todd, Mikhail Kilmov, and Yongho Sohn,“Aluminum Impurity Diffusion in Magnesium,” Journal of Phase Equilibria and Diffusion, vol.33, no.2,pp.121-125, 2012.
[50] Chandrani Nath, and A. Kumar, “Doping level dependent space charge limited conduction in polyaniline nanoparticles,” Journal of Applied Physics, vol.112, no.9, pp.093704, 2012.
[51] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng, “FullyRoom-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast andHigh-Density Memory Application,” Nano Letters, vol. 9, no. 4, pp. 1636-43,2009.
[52] C. Chen, Y. C. Yang, F. Zeng, and F. Pan, “Bipolar Resistive Switching inCu/AlN/Pt Nonvolatile Memory Device,” Appl. Phys. Lett., vol. 97, pp. 083502,2010.