| 研究生: |
鄒肇安 Tzou, Chao-An |
|---|---|
| 論文名稱: |
軟體定義網路中資料流之主動驅逐和超時管理機制 A Proactive Eviction and Timeout Management Scheme on Per-Flow Basis in Software-Defined Networking |
| 指導教授: |
林輝堂
Lin, Hui-Tang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 軟體定義網路 、網絡虛擬化 、流表 、轉發規則 、超時 、效率 |
| 外文關鍵詞: | Software Defined Networking, OpenFlow, Flow table, TCAM, forwarding rules, timeout |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來提出了一種新興的軟體定義網路(Software Defined Networking)架構,在此架構底下,網路分為控制層(Control Plane)與傳輸層(Data Plane),控制層的控制器(Controller)利用其中央集中式的控制模式,能使網絡運營商能夠通過更細粒度的網絡策略大大改善流量控制。但是,實現細粒度控制的成本是更多的轉發規則。 從而增加了性能和資源的稀缺性。
為了解決硬體的局限性,使用不同的移除策略進行流表管理。 其中,限制流規則存活時間可以大幅節省流表空間。此類方法目的為優化規則的持續時間以提高規則命中效率。在這項工作中,我們描述了基於時間的策略的關鍵屬性,並討論了它們對現有SDN網絡的影響。我們調查了目前對規則管理的工作缺少了同時使用流表命中率、流表使用率與重新安裝數量當作評量標準。在考量交換機效能時忽略流的服務。特別是,目前的策略只考慮單一交換機的最佳超時時間安排。此舉造成流路徑規則安插不同步衍生出一些問題且浪費流表空間。此文獻提出同步的解決方式並使用在超時時間上。此外,為了完全避免流表溢出的發生而提出了主動規則移除策略。
用具有代表性的流量數據和現實的拓撲,然後使用各種指標進行全面分析。 實驗結果表明,我們可以有效避免溢出事件,並將平均流表利用率降低約30%。 在多點拓樸的壓力測試中,我們可保證更多的流量通過,並且傳輸品質提高了約5%。 我們的方法有助於了解當前管理方法缺乏服務質量。
To solve the limitations of hardware, different removal strategies are used for flow table management. Among them, limiting the rule survival time can save the flow table space. The purpose of such methods is to optimize the duration of the rules to improve the efficiency of rule hits. In this work, we describe the key attributes of time-based policies and discuss the impact on networks. Current strategies only consider the rule scheduled for a single switch, this causes the flow path rules to evicted out of sync waste the flow table space. This paper proposes a solution and on timeout and a proactive rule eviction strategy to minimize flow table overflow events. Experiment with representative traffic data and realistic topologies, then analyze comprehensively with various metrics. The experimental results show that we can effectively avoid overflow events and reduce the average flow table utilization by about 30%. In the multi-point pressure test, we guarantee more flows to pass and the transmission quality improves by about 5%. Our approach helps to understand the current management method's lack of service quality.
Bibliography
[1] https://www.cisco.com/c/en/us/solutions/service-provider/vni-network-traffic-forecast/vni-forecast-info.html.
[2] Benson, Theophilus, Aditya Akella, and David A. Maltz. "Unraveling the Complexity of Network Management." NSDI. 2009.
[3] McKeown, Nick, et al. "OpenFlow: enabling innovation in campus networks." ACM SIGCOMM Computer Communication Review, 2008, 38.2: 69-74.
[4] Kreutz, Diego, et al. "Software-defined networking: A comprehensive survey." Proceedings of the IEEE 103.1 (2015): 14-76.
[5] Scott-Hayward, Sandra, Gemma O'Callaghan, and Sakir Sezer. "SDN security: A survey." Future Networks and Services (SDN4FNS), 2013 IEEE SDN For. IEEE, 2013.
[6] Yan, Qiao, et al. "Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and challenges." IEEE Communications Surveys & Tutorials 18.1 (2016): 602-622.
[7] Nguyen, Van-Giang, Truong-Xuan Do, and YoungHan Kim. "SDN and virtualization-based LTE mobile network architectures: A comprehensive survey." Wireless Personal Communications86.3 (2016): 1401-1438.
[8] Karakus, Murat, and Arjan Durresi. "A survey: Control plane scalability issues and approaches in software-defined networking (SDN)." Computer Networks 112 (2017): 279-293.
[9] Bizanis, Nikos, and Fernando A. Kuipers. "SDN and virtualization solutions for the Internet of Things: A survey." IEEE Access 4 (2016): 5591-5606.
[10] Farhady, Hamid, HyunYong Lee, and Akihiro Nakao. "Software-defined networking: A survey." Computer Networks 81 (2015): 79-95.
[11] Zhang, C., Yang, H., & Riley, G. F., "Admission control in software-defined datacenter network in view of flow table capacity." IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2018.
[12] Kosugiyama, T., Tanabe, K., Nakayama, H., "A flow aggregation method based on end-to-end delay in SDN." Communications (ICC), 2017 IEEE International Conference on. IEEE, 2017.
[13] H. Zhu, H. Fan, X. Luo, and Y. Jin, ‘‘Intelligent timeout master: Dynamic timeout for SDN-based data centers,’’ in Proc. IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), May 2015, pp. 734–737.
[14] Zhang, Linlian, et al. "TimeoutX: An adaptive flow table management method in software defined networks." Global Communications Conference (GLOBECOM), 2015 IEEE. IEEE, 2015.
[15] Metter, Christopher, et al. "Analytical model for SDN signaling traffic and flow table occupancy and its application for various types of traffic." IEEE Transactions on Network and Service Management 14.3 (2017): 603-615.
[16] Li, Taixin, et al. "SAT-FLOW: Multi-strategy flow table management for software defined satellite networks." IEEE Access 5 (2017): 14952-14965.
[17] Liu, Yang, et al. "A dynamic adaptive timeout approach for SDN switch." Computer and Communications (ICCC), 2016 2nd IEEE International Conference on. IEEE, 2016.
[18] Vishnoi, Anilkumar, et al. "Effective switch memory management in OpenFlow networks." Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems. ACM, 2014.
[19] Kim, Eun-Do, et al. "Enhanced Flow Table Management Scheme With an LRU-Based Caching Algorithm for SDN." IEEE Access 5 (2017): 25555-25564.
[20] Qian, Ying, Wanqing You, and Kai Qian. "to flow table overflow attacks and countermeasures." Networks and Communications (EuCNC), 2016 European Conference on. IEEE, 2016.
[21] Yan, Bo, et al. "Adaptive Wildcard Rule Cache Management for Software-Defined Networks." IEEE/ACM Transactions on Networking (TON) 26.2 (2018): 962-975.
[22] Xu, Tong, et al. "Mitigating the Table-Overflow Attack in Software-Defined Networking." IEEE Transactions on Network and Service Management 14.4 (2017): 1086-1097.
[23] Guo, Zehua, et al. "STAR: Preventing flow-table overflow in software-defined networks." Computer Networks 125 (2017): 15-25.
[24] S. Luo, H. Yu, and L. M. Li, “Fast incremental flow table aggregation in SDN,” in Proc. 23rd Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2014, pp. 1–8.
[25] A. Zarek, Y. Ganjali, D. Lie, "OpenFlow timeouts demystified", 2014.
[26] M. C. Neves, "On time-based strategies for optimizing flow tables in SDN", 2014.
[27] K. Kannan, S. Banerjee, "FlowMaster: Early eviction of dead flow on SDN switches" in Distributed Computing and Networking, New York, NY, USA:Springer, pp. 484-498, 2014.
[28] . Open Networking Foundation (ONF). Software-Defined Networking: The New Norm for Networks; ONF: Palo Alto, CA, USA, 2012.
[29] Kannan K., Banerjee S. (2014) FlowMaster: Early Eviction of Dead Flow on SDN Switches. In: Chatterjee M., Cao J., Kothapalli K., Rajsbaum S. (eds) Distributed Computing and Networking. ICDCN 2014. Lecture Notes in Computer Science, vol 8314. Springer, Berlin, Heidelberg
[30] X. N. Nguyen, D. Saucez, C. Barakat, T. Turletti, "OFFICER: A general optimization framework for OpenFlow rule allocation and endpoint policy enforcement", Proc. IEEE INFOCOM, pp. 478-486, Apr. 2015.
[31] F. Giroire, J. Moulierac, T. Khoa Phan, "Optimizing rule placement in software-defined networks for energy-aware routing", Proc. IEEE GLOBECOM, pp. 2523-2529, 2014.
[32] H. Huang, P. Li, S. Guo, B. Ye, "The joint optimization of rules allocation and traffic engineering in software defined network", Proc. IEEE 22nd Int. Symp. Qual. Serv., pp. 141-146, 2014.
[33] H. Li, P. Li, S. Guo, "Morule: Optimized rule placement for mobile users in SDN-enabled access networks", Proc. IEEE Global Commun. Conf. (GLOBECOM), pp. 4953-4958, Dec. 2014.
[34] N. Katta, O. Alipourfard, J. Rexford, D. Walker, Infinite CacheFlow in Software-Defined Networks, New York, NY, USA:ACM, pp. 175-180, 2014.
[35] B. Wolfgang, M. Menth, W. Felter, C. Dixon, J. Carter, "Wildcard compression of inter-domain routing tables for OpenFlow-based software-defined networking", Proc. 3rd Eur. Workshop Softw. Defined Netw., pp. 25-30, Sep. 2014.
[36] X. Wang, C. Wang, C. Jiang, L. Yang, Z. Li, X. Zhou, "Rule optimization for real-time query service in software-defined Internet of vehicles", CoRR, 2015.
校內:2025-01-31公開