簡易檢索 / 詳目顯示

研究生: 顏嘉良
Yan, Jia-liang
論文名稱: 化學機械拋光有限元素力學分析與多尺度接觸力學模式之建立
Finite Element Analysis of Multiscale Contact Stress Problems for Chemical Mechanical Polishing Processes
指導教授: 陳國聲
Chen, Kuo-shen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 149
中文關鍵詞: Dishingdevice levelwafer levelCAD接觸壓力平坦化有限元素分析化學機械拋光材料移除率
外文關鍵詞: CMP, Uniformity, Finite Element Method, Contact stress, CAD, Dishing
相關次數: 點閱:112下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學機械拋光(Chemical Mechanical Polishing,CMP)其研磨均勻度對晶圓元件之良率有重大之影響。本論文主要是從機械作用反應的觀點,來探討銅膜化學機械拋光移除率。所建立之模型探討CMP研磨過程,晶圓與研磨墊之接觸情形。其中包含研磨墊幾何尺寸及研磨墊材料機械性質以及晶圓研磨面與研磨墊間接觸之分佈應力進行分析。由於CMP操作參數十分複雜,例如平台和晶圓載具加在晶圓上的外在負載壓力、研磨墊材料性質與幾何形狀等等變數。因此,本文將針對CMP研磨中製程參數,研究晶圓研磨進行時晶圓與研磨墊之間的接觸形態在不同負載壓力下影響接觸壓力平坦化程度進行深入的探討,發展並評估其理論模型。

    在wafer level部分,利用有限元素分析,本文將以Fu and Chandra研究理論為基礎判別模擬模型之可靠性,同時減少理論推導與幾何模型之複雜度,以更簡單的技巧發展與建立該系統之物理模型。在device level部分,形成淺碟型(Dishing)或應力腐蝕型(Stress erosion)的凹陷現象則與device與研磨墊接觸面之接觸應力值有關,利用Local dishing governing equation探討在不同device幾何結構下,分析接觸應力分佈情形。利用FEM模擬分析,與CAD結合建立一套完整CMP製程模擬工具,具體地以廠務實驗數據作為研究依據與製程最佳化之標準。建立完整的資料數據,提供CAD進行預測材料移除分析。

    Chemical-Mechanical Polishing (CMP) process plays an important role in the state of the arts integrated circuit (IC) fabrication. The uniformity of global material removal rate (MRR) during CMP significantly impacts the overall device yield. In addition, the micro imperfections such as dishing and erosion between copper lines generated during CMP processing would certainly influence the device reliability. Since both problems directly correlated to the state of stress during CMP, it is important to perform detail stress analyses for CMP process, both in wafer and device levels. For the wafer level process, a new contact stress uniformity definition is proposed based on the width of the relatively flat zone. Based on the new definition, the effect of mechanical properties of pad materials, geometry parameters, and operating conditions on the contact stress uniformity are analyzed and discussed. In order to analyze the pressure distribution between wafer and pad, finite element (FE) models are used after building a wafer/pad contact stress model to analyze the effect of material (e.g., hyperelasticity), geometry (e.g., wafer bow and wafer grooves), and different loadings (e.g., muli-zone load) over the wafer to affect the contact stress uniformity during the CMP process. For the device level process, the fundamental model regarding dishing and stress erosion are analyzed. In addition, the local existed local dishing model is modified to incorporate the viscoelastic effect of pad materials. By the parameter study results and the newly defined performance index, it is possible to further perform detailed numerical analysis to combine with computer simulation and visulization for the development and integration of a CMP CAD simulation module. By the theses information, it shall be important for engineers to improve the performance such as uniformity of MRR for CMP processes.

    中文摘要…………………………………………………………………I Abstract.................................................II 致謝....................................................III 目錄……………………………………………………………………IV 表目錄…………………………………………………………………VII 圖目錄……………………………………………………………… VIII 符號說明……………………………………………………………XIII 第一章 緒論 1.1 前言……………………………………………………………1 1.2 文獻回顧………………………………………………………5 1.3 研究動機………………………………………………………7 1.4 本文架構………………………………………………………8 第二章 化學機械拋光平坦化技術 2.1 介紹……………………………………………………………9 2.2 多重內連線製程………………………………………………9 2.3 平坦化方法……………………………………………………12 2.4 化學機械拋光機制……………………………………………16 2.5 化學機械拋光移除模型………………………………………19 第三章 化學機械拋光接觸力學理論 3.1 介紹……………………………………………………………23 3.2 化學機械拋光接觸模型………………………………………23 3.3 接觸力學理論…………………………………………………26 3.4 研磨墊粗度峰平均接觸壓力…………………………………31 3.5 有限元素分析法………………………………………………37 第四章 化學機械拋光wafer level製程參數模擬分析 4.1 介紹……………………………………………………………40 4.2 有限元素模型之建立…………………………………………44 4.3 化學機械拋光機制接觸壓力均勻度之定義…………………48 4.4 研磨墊幾何與材料性質分析…………………………………50 4.5 晶圓背壓分段壓力設計概念…………………………………52 4.5.1 均勻背壓負載……………………………………………53 4.5.2 多區域背壓負載…………………………………………54 4.6 晶圓與研磨墊接觸型態分析…………………………………55 4.6.1 平坦晶圓與平坦研磨墊接觸……………………………56 4.6.2 平坦晶圓與具有溝槽研磨墊接觸應力分佈……………58 4.6.3 翹曲晶圓與平坦研磨墊接觸……………………………61 4.6.4 翹曲晶圓與具有溝槽研磨墊接觸………………………66 4.7 結論……………………………………………………………68 第五章 化學機械拋光device level製程參數模擬分析 5.1 介紹……………………………………………………………69 5.2 有限元素模型之建立…………………………………………71 5.3 Cu CMP Stage 1與Stage 2之製程參數模擬分析…………73 5.4 Cu CMP Stage 1與Stage 2結論……………………………77 5.4.1 研磨墊沒有接觸low-feature area……………………80 5.4.2 研磨墊接觸low-feature area…………………………86 5.5 Cu CMP Stage 3之製程參數模擬分析………………………89 5.6 Modified Fu and Chandra dishing governing equation…96 5.7 結論…………………………………………………………100 第六章 微觀力學表面粗糙接觸 6.1 介紹…………………………………………………………101 6.2 研磨墊表面粗糙與晶圓接觸分析…………………………101 6.3 研磨粒磨秏機制與移除率之關係…………………………105 6.3.1 研磨粒與晶圓表面接觸之情形………………………107 6.3.2 移除率之關係…………………………………………111 第七章 化學機械拋光製程參數分析總結 7.1 介紹…………………………………………………………114 7.2 化學機械拋光模擬參數總結………………………………115 7.3 電腦輔助設計與視覺化模擬………………………………117 7.3.1 Wafer level CMP製程模組之建構……………………117 7.3.2 Device level CMP製程模組之建構…………………120 7.4 結論…………………………………………………………123 第八章 結論與未來展望 8.1 本文歸納……………………………………………………124 8.2 本文貢獻……………………………………………………126 8.3 未來工作與展望結論………………………………………127 參考文獻………………………………………………………………129

    [1] K. A. Perry, Digest of technical papers, Symposium on
    VLSI Technology, p. 2, 1998.
    [2]莊達人編著,VLSI 製造技術,高立圖書有限公司,第二版,
    2002年。
    [3]土肥俊郎等箸,王建榮、林慶福等編譯,半導體平坦化CMP技
    術,全華科技圖書股份有限公司,2000年。
    [4] F. Preston, “Optimization of Computer Controlled
    Polishing,” Glass Tech, Vol. 11, p. 214–219, 1927.
    [5] S. R. Runnels and P. Renteln, “Modeling the effect of
    polish pad deformation on wafer surface stress
    distributions during chemical mechanical polishing,”
    Dielect Sci Technol, Vol. 6, p. 110–121, 1993.
    [6] A. R. Baker, “The Origin of the Edge Effects in
    CMP,” Proc Electrochem Soc, Vol. 96, p. 228–237,
    1997.
    [7] D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin,
    and T. Cale,”Von Mises stress in chemical-mechanical
    polishing processes,” J. Electrochem Soc, Vol. 144,
    p. 1122–1127, 1997.
    [8] C. Srinivasa-Murthy, D. Wang, S. P. Beaudoin, T.
    Bibby, K. Holland, and T. Cale, ”Stress Distribution
    in Chemical-Mechanical Polishing,” Thin Solid Films,
    Vol. 308, p. 533–537, 1997.
    [9] Y. Sasaki, H. Aoyama, I. Inasaki, H. Miyairi, H.
    Shibaya, Proceedings of Silicon Machining, USA, p. 92,
    1998.
    [10] G. Byrne, B. Mullany, P. Young, Ann. CIRP., Vol. 48,
    p. 143, 1999.
    [11] W. T. Tseng, Y. H. Wang, and J. H. Chin, “Effects of
    Film Stress on the Chemical Mechanical Polishing
    Process,” Journal of Electrochemical Society, Vol.
    146, p. 4273-4280, 1999.
    [12] G. Fu, A. Chandra, J. Electron., Vol. 30, p. 400,
    2001.
    [13] L. M. Cook, “Chemical Processes in Glass
    Polishing,” Journal of Non-Crystalline Solid, Vol.
    120, p. 152-171, 1990.
    [14] T. K. Yu, C. C. Yu, M. Orlowski, “A statistical
    polishing pad model for chemical mechanical polish,”
    IEDM Tech. Dig., p. 865-868, 1993.
    [15] P. Josh Wolf ERC, Retreat Stanford:New Chemistries &
    Tools for scCO2 Processing of Thin Films, 2003.
    [16] S. Sivaram, K. Monnig, R. Tolles, A. Maury, and R.
    Leggett, The Electronchemical Society, Inc.,
    Pennington, NJ, p. 606, 1991.
    [17] J. K. Chu, J. S. Multani, S. K. Mittal, J. T. Orton,
    R. Jecmen, Proc., IEEE 4th VMIC, Santa Clara, CA,
    IEEE, New York, p. 61, 1987.
    [18] K. D. Beyer, U. S. Patent, No. 4944836, 1990.
    [19] F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A.
    Jaso, W. L. Guthrie, D. J. Pearsons, and M. B. Small,
    J. Electrochem. Soc., Vol. 138, p. 3460, 1991.
    [20] Poli-1200, Copyright AM Technology, 北京奧美創新機電科
    技有限公司,2003。
    [21] I. Ali, R. Roy, and G. Shinn, Solid State Technology,
    Vol. 37, p.63, 1994.
    [22] M. M. Martinez, paper presented at the SRC Topical
    Research Conference on Chemical Mechanical Polishing
    held at Rensselaer Polytechnic Institute, Troy, NY,
    p.26-27, 1995.
    [23] N. J. Brown, P. C. Baker, and R. T. Maney, Proc.
    SPIE., Vol. 306, p.42, 1981.
    [24] C. W. Liu, B. T. Dai, W. T. Tseng, and C. F. Yeh, J.
    Electrochem. Soc., Vol. 143, p.716, 1996.
    [25] T. K. Yu, C. C. Yu, M. Orlowski, “A statistical
    polishing pad model for chemical mechanical polish,”
    IEDM Tech. Dig., p.865-868, 1993.
    [26] S. R. Runnels, “Feature-Scale Fluid-Based Erosion
    Modeling For Chemical Mechanical Polishing,”
    Electrochemical Society, Vol. 141, No.7, p. 1900-
    1904, 1994.
    [27] J. Tichy, J. A. Levert, L. Shan, S. Danyluk,“Contact
    Mechanics and Lubrication Hydrodynamics of Chemical
    Mechanical Polishing,” J. Electrochem. Soc., Vol.
    146, p. 1523-1528, 1999.
    [28] Y. R. Jeng and P. Y. Huang, “A Material Removal Rate
    Model Considering Interfacial Micro-Contact Wear
    Behavior for Chemical Mechanical Polishing,” ASME J.
    Tribol., Vol. 127, p. 190–197, 2005.
    [29] C. Anthony, Nanoindentation, Spring-Verlag, New York,
    Inc., 2002.
    [30] K. L. Johnson, Contact mechanics, Cambridge
    University Press, Cambridge, p.406-416, 1989.
    [31] J. A. Greenwood and J. B. P. Williamson, “Contact of
    nominally flat surfaces,” Proceedings, Royal
    Society, A295, p. 300, 1966.
    [32] J. Halling, K. A. Nuri, “Contact of rough surfaces
    of working-hardening Materials,” In the Mechanics of
    Contact Between Deformable Bodies, Eds. De Pater &
    Kalker. Delft: University Press, 1975.
    [33] ABAQUS Standard Version 6.4 User’s Manual. HKS.
    Corp., 2004.
    [34] Y. Y. Lin and S. P. Lo, ”A Study on the Stress and
    Nonuniformity of the Wafer Surface for the Chemical-
    Mechanical Polishing Process,” Int J Adv Manuf
    Technol, Vol. 22, p. 401–409, 2003.
    [35] Y. Y. Lin and S. P. Lo, “A Study of a Finite Element
    Model for the Chemical Mechanical Polishing
    Process,” Int J Adv Manuf Technol, Vol. 23, p. 644–
    650, 2004.
    [36] S. P. Lo and Y. Y. Lin, “The prediction of wafer
    surface non-uniformity using FEM and ANFIS in the
    chemical mechanical polishing process,” Journal of
    Materials Processing Technology, Vol.168, p.250–257,
    2005.
    [37] R. D. Cook and W. C. Young, Advanced Mechanics of
    Materials, Prentice-Hall, 1999.
    [38] G. G. Stoney, “The tension of Thin Metallic Film
    Deposited by Electrolysis,” Proc. R. Soc. Lond, A82,
    p. 172, 1909.
    [39] G. Fu and A. Chandra, “The Relationship Between
    Wafer Surface Pressure and Wafer Backside Loading in
    Chemical Mechanical Polishing,” Thin Solid Films,
    Vol. 474, p. 217-221, 2005.
    [40] G. Fu and A. Chandra, “An Analytical Dishing and
    Step Height Reduction Model for Chemical Mechanical
    Planarization,” IEEE Trans. on Semiconductor
    Manufacturing, Vol. 16, NO. 3, 2003.
    [41] Mohsenin, N. N. Physical properties of plant and
    animal materials. Gordon and Breach Science
    Publishers, New York, p. 891, 1970.
    [42] Y. Xie, and B. Bhushan, “Effects of Particle Size
    Polishing Pad and Contact Pressure in Free Abrasive
    Polishing,” Wear, Vol. 200, p. 281-295, 1996.
    [43] M. A. Moore, and P. A. Swanson,“The Effect of
    Particle Shape on Abrasive Wear,” Proc. of Wear of
    Materials, p. 1-11, 1983.
    [44] D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin,
    and T. Cale, “Von Mises Stress in Chemical-
    Mechanical Polishing Processes,” Journal of
    Electrochemical Society, Vol. 144, p. 1121-1127, 1997.
    [45] T. J. Hubbard and E. K. Antonsson, Sens. Mater.
    Conf., Tokyo, Japan, Vol. 7, p. 437, 1997.
    [46] Maury, D. Ouma, D. Boning and J. Chung, “A
    modification to Preston’s equation and impact on
    pattern density effect modeling,” Program Abstracts,
    Advanced Metalization and Interconnect Systems for
    ULSI Applications, 1997.
    [47] F. Zhang and A. Busnaina, Electrochemical and Solid-
    State Letters, Vol. 1, p. 184-187, 1998.
    [48] Zhao and F. G. Shi, 1999 CMP-MIC conference, Santa
    Clara, CA, Feb. 11-12, p. 13-22, 1999.

    下載圖示 校內:2009-07-27公開
    校外:2009-07-27公開
    QR CODE