簡易檢索 / 詳目顯示

研究生: 沈相甫
Shen, Hsiang-Fu
論文名稱: 對採用等離子噴塗技術於Ti-6Al-4V上之羥磷灰石粉末塗層進行臨床植入特性評估
The Clinical Implant Characteristics Assessment of Hydroxyapatite Powder Coating on Ti-6Al-4V Alloy by Plasma Spraying Technology
指導教授: 楊岱樺
Yang, Tai-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 118
中文關鍵詞: 生物陶瓷電漿噴塗人工植入物氫氧基磷灰石
外文關鍵詞: Hydroxyapatite, Artificial implants, Plasma spraying, Bio-ceramics
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醫學技術提升並伴隨著高齡化社會的到來。由於衰老會帶來身體老化與死亡,而事故或疾病均會造成身體的損害,對於人工植入物的需求也逐年增加,因此生醫材料是現今所矚目的焦點。其中氫氧基磷灰石(hydroxyapatite, Ca10(PO4)6(OH)2, HA)與人骨中的礦物質成份相近,具有生物相容性,常被用於使用在人工植入物上,可以促進新骨的生長。不過生物陶瓷的主要缺點是其脆性和在生理環境中的疲勞破壞,補強增韌是研發的重要課題,金屬基材表面被覆生物陶瓷將是此研究的重點,臨床的試驗及推廣應用也是開發生物陶瓷不可或缺的一面。
    本研究中使用等離子噴塗技術,是唯一獲得美國食品和藥物管理局 (FDA) 用於生物醫學塗料,因為它能產生優異的塗層性能。然而HA塗層的沉積技術多年來一直被研究應用於Ti-6Al-4V 金屬上,透過沉積一層羥基磷灰石在金屬合金上,不但保有金屬的承重能力,同時,利用塗層的與骨骼的化學相似性,以達到具有良好生物相容性且具有優異機械性能的植入物。在本實驗中利用電漿噴塗製程,且僅透過調整粉末原料,並且在其他噴塗參數條件固定下,得出的HA塗層,進而使植入物具有良好的顯微結構、機械性質以及生物相容性。於本實驗結果中也顯示使用121粉末得到的塗層,不管是對於顯微結構、機械性能以及生物相容性上,比起006與20389這兩款粉末都具有更優異的表現。

    Advancements in medical technology have accompanied the arrival of an aging society. As aging leads to physical deterioration and mortality, the demand for artificial implants increases due to injuries and diseases causing damage to the body. Therefore, biomedical materials have become a focal point of research. Hydroxyapatite (HA), a mineral component like that found in human bones, is biocompatible and commonly used in artificial implants to promote new bone growth. However, the main drawbacks of bio-ceramics are their brittleness and fatigue failure in physiological environments. Reinforcement and toughening are important areas of research, and coating the surface of a metallic substrate with bio-ceramics is a key focus. Clinical trials and widespread application are also essential aspects of developing bio-ceramics.

    In this study, plasma spraying technology, the only technique approved by the US Food and Drug Administration (FDA) for biomedical coatings, was used because it can produce excellent coating performance. However, the deposition of HA coatings on Ti-6Al-4V alloy has been studied for many years. By depositing a layer of hydroxyapatite on the metal alloy, it not only retains the load-bearing capacity of the metal but also utilizes the chemical similarity between the coating and the bone to achieve good biocompatibility and excellent mechanical properties of the implant. In this experiment, the plasma spraying process was utilized, and the adjustment of powder materials was carried out while keeping other spraying parameters constant., HA coatings with desirable microstructure, mechanical properties, and biocompatibility were obtained. Finally, the experimental results showed that the coating produced using 121 powder demonstrated superior performance in terms of microstructure, mechanical properties, and biocompatibility compared to the 20389 and 006 powders.

    摘要 I Abstract II 致謝 III List of tables VII List of figures VIII Abbreviation XI Chapter 1 Introduction 1 1.1 Introduction to Hydroxyapatite 1 1.2 Characteristics and Mechanical Properties of Hydroxyapatite (HA) 3 1.3 Process of plasma spraying 6 1.3.1 Effect of Electric Current 6 1.3.2 Effect of Material Powder 7 1.3.3 Effect of Plasma forming gases 8 1.3.4 Effect of Preheat 9 1.3.5 Effect of stand-off distance 10 1.4 Clinical Applications of Hydroxyapatite (HA) 10 1.5 Surface Modification Applications of HA 11 1.5.1 Plasma spray coating technique 11 1.5.2 Thermal spray coating technique 12 1.5.3 Hot isostatic pressing, HIP. 13 1.5.4 Pulsed laser deposition,PLD 14 1.6 In vitro analysis of the surface HA coating 14 1.7 Motivation and Purpose 15 Chapter 2 Materials and Methods 16 2.1 Materials introduction 16 2.1.2 Titanium Alloy Metal Block Substrate 16 2.1.1 Powder 17 2.1.3 Gel preparation for Tensile Test 19 2.1.4 Cell culture 20 2.1.5 Experimental Equipment 21 2.1.5.1 Sandblasting machine 22 2.1.5.2 Metal Tensile/Shear Testing Machine 22 2.1.5.3 Contact-Type Surface Roughness Gauge 23 2.1.5.4 Scanning Electron Microscope (SEM) 24 2.1.5.5 X-Ray Diffraction (XRD) 25 2.1.5.6 Atmospheric Plasma Spraying System 26 2.2 Experimental Procedures and Methods 29 2.2.1 Preparation of Specimens 29 2.2.2 Surface Roughness 32 2.2.3 Bond Strength Test 33 2.2.4 Material Metallographic Analysis 35 2.2.5 Coating XRD Analysis 39 2.2.5.1 Quantitative Analysis Method 39 2.2.5.1.1Sample Preparation: 39 2.2.5.1.2 Experimental Method 40 2.2.6 Cell proliferation and Cell cytotoxicity assay 42 2.2.6.1 MG63 Cell survival rate 42 2.2.6.2 Cell cytotoxicity assay 42 2.2.7 Cell attachment 43 2.2.8 Statistics 43 Chapter 3 Results 44 3.2 Materials 44 3.2.1 Hydroxyapatite Powder 44 3.2.1.1 Morphology and Size 44 3.2.1.1.1 MEDIPURER 121 45 3.2.1.1.2 MEDIPURER 006 47 3.2.1.1.3 MEDIPURER 20389 49 3.2.1.2 Crystallinity and Purity 51 3.2.1.2.1 MEDIPURER 121 52 3.2.1.2.2 MEDIPURER 006 53 3.2.1.2.3 MEDIPURER 20389 54 3.2.1.3 Ca/P 54 3.2.1.3.1 MEDIPURER 121 55 3.2.1.3.2 MEDIPURER 006 55 3.2.1.3.3 MEDIPURER 20389 56 3.2.2 Titanium Alloy Metal Block Substrate 56 3.2.2.1 Morphology 56 3.2.2.2 Ca/P 57 3.2.2.3 Surface Roughness before Coating after Blasting 58 3.3 Plasma Spraying Coating 58 3.3.1 Morphology 58 3.3.1.1 MEDIPURER 121 59 3.3.1.2 MEDIPURER 006 61 3.3.1.3 MEDIPURER 20389 63 3.3.2. Ca/P 65 3.3.2.1 MEDIPURER 121 65 3.3.2.2 MEDIPURER 006 66 3.3.2.3 MEDIPURER 20389 66 3.3.3. Surface Roughness 67 3.3.3.1 MEDIPURER 121 67 3.3.3.2 MEDIPURER 006 68 3.3.3.3 MEDIPURER 20389 69 3.3.4 Bond Strength 72 3.3.4.1 MEDIPURER 121 72 3.3.4.2 MEDIPURER 006 73 3.3.4.3 MEDIPURER 20389 74 3.3.5 Metallographic Analysis 79 3.3.5.1 MEDIPURER 121 79 3.3.5.2 MEDIPURER 006 80 3.3.5.3 MEDIPURER 20389 81 3.3.6 Coating XRD Analysis 85 3.3.6.1 MEDIPURER 121 87 3.3.6.2 MEDIPURER 006 87 3.3.6.3 MEDIPURER 20389 88 3.3.7 Biocompatibility 88 3.3.7.1 Cell proliferation 88 3.3.7.2 Cell cytotoxicity assay 89 3.3.7.3 Cell SEM 92 3.3.7.3.1 Blast 92 3.3.7.3.2 MEDIPURER 121 94 3.3.7.3.3 MEDIPURER 006 96 3.3.7.3.4 MEDIPURER 20389 98 3.3.7.4 Cell attachment 100 Chapter 4 Discussion 105 Chapter 5 Conclusion 110 Chapter 6 References 112

    1. Peppas, N.A. and R. Langer, New challenges in biomaterials. Science, 1994. 263(5154): p. 1715-1720.
    2. Lakes, R.S. and J. Park, Biomaterials: an introduction. 1992: Springer Science & Business Media.
    3. Best, S., et al., Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 2008. 28(7): p. 1319-1327.
    4. Davaie, S., T. Hooshmand, and S. Ansarifard, Different types of bioceramics as dental pulp capping materials: A systematic review. Ceramics International, 2021. 47(15): p. 20781-20792.
    5. Hulbert, S., et al., History of bioceramics. Ceramics international, 1982. 8(4): p. 131-140.
    6. Gomez-Vega, J., et al., Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing. Biomaterials, 2000. 21(2): p. 105-111.
    7. Orlovskii, V., V. Komlev, and S. Barinov, Hydroxyapatite and hydroxyapatite-based ceramics. Inorganic materials, 2002. 38: p. 973-984.
    8. Hing, K., S. Best, and W. Bonfield, Characterization of porous hydroxyapatite. Journal of Materials Science: Materials in Medicine, 1999. 10(3): p. 135-145.
    9. Kawagoe, K., et al., Augmentation of cancellous screw fixation with hydroxyapatite composite resin (CAP) in vivo. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2000. 53(6): p. 678-684.
    10. Brunette, D.M., et al., Titanium in medicine: material science, surface science, engineering, biological responses and medical applications. 2001: Springer.
    11. Silva, P., et al., Adhesion and microstructural characterization of plasma-sprayed hydroxyapatite/glass ceramic coatings onto Ti-6A1-4V substrates. Surface and Coatings Technology, 1998. 102(3): p. 191-196.
    12. Xue, W., et al., Effect of hydroxyapatite coating crystallinity on dissolution and osseointegration in vivo. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2005. 74(4): p. 553-561.
    13. Ducheyne, P. and Q. Qiu, Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 1999. 20(23-24): p. 2287-2303.
    14. Sun, L., et al., Material fundamentals and clinical performance of plasma‐sprayed hydroxyapatite coatings: A review. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2001. 58(5): p. 570-592.
    15. Ong, J.L., D.L. Carnes, and K. Bessho, Evaluation of titanium plasma-sprayed and plasma-sprayed hydroxyapatite implants in vivo. Biomaterials, 2004. 25(19): p. 4601-4606.
    16. Mohseni, E., E. Zalnezhad, and A.R. Bushroa, Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. International Journal of Adhesion and Adhesives, 2014. 48: p. 238-257.
    17. Mittal, M., S. Nath, and S. Prakash, Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. Materials Science and Engineering: C, 2013. 33(5): p. 2838-2845.
    18. Levingstone, T.J., Optimisation of plasma sprayed hydroxyapatite coatings. 2008, Dublin City University.
    19. Mohammadi, Z., A. Ziaei-Moayyed, and A.S.-M. Mesgar, Adhesive and cohesive properties by indentation method of plasma-sprayed hydroxyapatite coatings. Applied Surface Science, 2007. 253(11): p. 4960-4965.
    20. Quek, C., K. Khor, and P. Cheang, Influence of processing parameters in the plasma spraying of hydroxyapatite/Ti–6Al–4V composite coatings. Journal of Materials Processing Technology, 1999. 89: p. 550-555.
    21. Levingstone, T.J., et al., Plasma sprayed hydroxyapatite coatings: Understanding process relationships using design of experiment analysis. Surface and Coatings Technology, 2015. 283: p. 29-36.
    22. Tsui, Y., C. Doyle, and T. Clyne, Plasma sprayed hydroxyapatite coatings on titanium substrates Part 1: Mechanical properties and residual stress levels. Biomaterials, 1998. 19(22): p. 2015-2029.
    23. Morks, M. and A. Kobayashi, Effect of gun current on the microstructure and crystallinity of plasma sprayed hydroxyapatite coatings. Applied Surface Science, 2007. 253(17): p. 7136-7142.
    24. Morks, M.F. and A. Kobayashi, Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings. Materials Science and Engineering: B, 2007. 139(2-3): p. 209-215.
    25. Chang, C., et al., Effects of power level on characteristics of vacuum plasma sprayed hydroxyapatite coating. Journal of thermal spray technology, 1998. 7: p. 484-488.
    26. Yin, Z., et al., Particle in-flight behavior and its influence on the microstructure and mechanical properties of plasma-sprayed Al2O3 coatings. Journal of the European Ceramic Society, 2008. 28(6): p. 1143-1148.
    27. Cheang, P. and K. Khor, Thermal spraying of hydroxyapatite (HA) coatings: effects of powder feedstock. Journal of materials processing technology, 1995. 48(1-4): p. 429-436.
    28. Cheang, P. and K. Khor, Influence of powder characteristics on plasma sprayed hydroxyapatite coatings. Journal of Thermal Spray Technology, 1996. 5: p. 310-316.
    29. Kweh, S., K. Khor, and P. Cheang, Plasma-sprayed hydroxyapatite (HA) coatings with flame-spheroidized feedstock: microstructure and mechanical properties. Biomaterials, 2000. 21(12): p. 1223-1234.
    30. Leylavergne, M., et al., Comparison of plasma-sprayed coatings produced in argon or nitrogen atmosphere. Journal of thermal spray technology, 1998. 7: p. 527-536.
    31. Erfanmanesh, M., et al., The effect of argon shielding gas at plasma spray process on the structure and properties of MoSi2 coating. Ceramics International, 2014. 40(3): p. 4529-4533.
    32. Janisson, S., et al., Plasma spraying using Ar-He-H 2 gas mixtures. Journal of thermal spray technology, 1999. 8: p. 545-552.
    33. Bacci, T., et al., Reactive plasma spraying of titanium in nitrogen containing plasma gas. Materials Science and Engineering: A, 2000. 283(1-2): p. 189-195.
    34. Yang, Y.-C. and E. Chang, Influence of residual stress on bonding strength and fracture of plasma-sprayed hydroxyapatite coatings on Ti–6Al–4V substrate. Biomaterials, 2001. 22(13): p. 1827-1836.
    35. Paredes, R.S., S. Amico, and A. d'Oliveira, The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surface and Coatings Technology, 2006. 200(9): p. 3049-3055.
    36. Lu, Y., et al., Further studies on the effect of stand-off distance on characteristics of plasma sprayed hydroxyapatite coating. Surface and coatings technology, 2002. 157(2-3): p. 221-225.
    37. Cizek, J., K.A. Khor, and Z. Prochazka, Influence of spraying conditions on thermal and velocity properties of plasma sprayed hydroxyapatite. Materials Science and Engineering: C, 2007. 27(2): p. 340-344.
    38. Cheang, P. and K. Khor, Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials, 1996. 17(5): p. 537-544.
    39. Wang, B., et al., Characteristics and osteoconductivity of three different plasma-sprayed hydroxyapatite coatings. Surface and Coatings Technology, 1993. 58(2): p. 107-117.
    40. Khor, K., et al., Plasma spraying of functionally graded hydroxyapatite/Ti–6Al–4V coatings. Surface and Coatings Technology, 2003. 168(2-3): p. 195-201.
    41. Gómez Morales, J., et al., Controlled nucleation and growth of thin hydroxyapatite layers on titanium implants by using induction heating technique. Langmuir, 2004. 20(13): p. 5174-5178.
    42. Gadow, R., A. Killinger, and N. Stiegler, Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surface and Coatings Technology, 2010. 205(4): p. 1157-1164.
    43. Eason, R., Pulsed laser deposition of thin films: applications-led growth of functional materials. 2007: John Wiley & Sons.
    44. Garcia-Sanz, F., et al., Hydroxyapatite coatings: a comparative study between plasma-spray and pulsed laser deposition techniques. Journal of Materials Science: Materials in Medicine, 1997. 8(12): p. 861-865.
    45. Huang, Y.-C., P.-C. Hsiao, and H.-J. Chai, Hydroxyapatite extracted from fish scale: Effects on MG63 osteoblast-like cells. Ceramics international, 2011. 37(6): p. 1825-1831.
    46. Ghosh, K., Biocompatibility of hyaluronic acid: From cell recognition to therapeutic applications, in Natural-Based Polymers for Biomedical Applications. 2008, Elsevier. p. 716-737.
    47. Souto-Lopes, M., et al., Full physicochemical and biocompatibility characterization of a supercritical CO2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regeneration. Biomaterials Advances, 2023: p. 213280.
    48. Choi, H.J., et al., MG-63 cells proliferation following various types of mechanical stimulation on cells by auxetic hybrid scaffolds. Biomaterials Research, 2016. 20(1): p. 1-8.
    49. Deligianni, D.D., et al., Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials, 2000. 22(1): p. 87-96.
    50. Begam, H., et al., MG63 osteoblast cell response on Zn doped hydroxyapatite (HAp) with various surface features. Ceramics International, 2017. 43(4): p. 3752-3760.
    51. Salerno, A., et al., Microstructure, degradation and in vitro MG63 cells interactions of a new poly (ε-caprolactone), zein, and hydroxyapatite composite for bone tissue engineering. Journal of bioactive and compatible polymers, 2012. 27(3): p. 210-226.
    52. Khor, K., Y. Wang, and P. Cheang, Plasma spraying of combustion flame spheroidized hydroxyapatite (HA) powders. Journal of thermal spray technology, 1998. 7: p. 254-260.
    53. Zhang, Q., et al., Dissolution and mineralization behaviors of HA coatings. Biomaterials, 2003. 24(26): p. 4741-4748.
    54. Cao, Y., et al., Water vapour-treated hydroxyapatite coatings after plasma spraying and their characteristics. Biomaterials, 1996. 17(4): p. 419-424.
    55. Chen, J., et al., Effect of atmosphere on phase transformation in plasma‐sprayed hydroxyapatite coatings during heat treatment. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials and The Japanese Society for Biomaterials, 1997. 34(1): p. 15-20.
    56. Scalera, F., et al., Cork-derived hierarchically porous hydroxyapatite with different stoichiometries for biomedical and environmental applications. Materials Chemistry Frontiers, 2021. 5(13): p. 5071-5081.

    無法下載圖示 校內:2028-08-23公開
    校外:2028-08-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE