簡易檢索 / 詳目顯示

研究生: 張陳冠
Chang, Chen-Kuan
論文名稱: 離子束輔助射頻磁控濺鍍氧化鋅鋁薄膜之研究
Research for Aluminum-Doped Zinc Oxide Thin Films by Ion Beam Assisted RF Magnetron Sputtering
指導教授: 施權峰
Shih, Chuan-Feng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 111
中文關鍵詞: 氧化鋅鋁濺鍍離子源輔助
外文關鍵詞: AZO, sputtering, ion beam assisted
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題為使用離子源輔助射頻磁控濺鍍氧化鋅鋁(ZnO:Al, AZO)薄膜,探討基板溫度與離子源陽極電壓對薄膜特性之影響。
    在基板溫度對AZO薄膜性質影響之研究中,固定薄膜厚度為200 nm,當射頻脈衝功率280 W、工作壓力1×10-3 torr及氬氣流量20 sccm時,發現在基板溫度600 ℃下,具有最低電阻率7.83×10-4 Ω-cm以及可見光之平均穿透率92.6 %。透過霍爾效應量測、光電子光譜儀、X光粉末繞射儀、X光低掠角繞射儀、掃描電子顯微鏡(SEM)、原子力顯微鏡(AFM)、紫外光/可見光光譜儀、反射光譜儀及X光光電子能譜儀(XPS)等儀器分析基板溫度對於薄膜的電學性質、晶體結構、顯微結構、光學性質以及鍵結組成之影響。
    在離子源輔助鍍膜對AZO薄膜性質影響之研究中,調變離子源陽極電壓,探討在不同基板溫度下之離子源能量對薄膜性質的改變。延用基板加溫時的最佳參數,發現在基板溫度600 ℃下且離子源陽極電壓30V時,具有最低電阻率6.29×10-4 Ω-cm以及可見光之平均穿透率93.0 %。透過前述相同之儀器且加入穿透式電子顯微鏡(TEM)來分析薄膜之性質。
    最後將AZO薄膜應用於有機太陽電池之透明陽極,使用CuPc與C60兩種小分子材料當作元件之主動層,製作元件之結構為(Glass/AZO/CuPc/ C60/BCP/Al),探討不同離子源能量輔助鍍膜的AZO透明陽極對元件特性之影響。

    This thesis reports on the aluminum-doped zinc oxide(AZO) thin films deposited by ion beam assisted rf magnetron sputtering.
    The first part of this thesis investigated the effects of substrate temperature on the AZO thin films. The films thickness (200 nm), rf pulse power(280 W), working pressure (1×10-3 torr)and argon flow rate(20 sccm)were fixed. The lowest electrical resistivity of 7.83×10-4 Ω-cm and average visible transmittance of 92.6 % were found when the films were deposited at 600 ℃. The electric, structure, surface morphology, optical properties and the chemical bonding of the sputtered AZO thin films were investigated by Hall effect measurement, photoelectron spectrometer, powder and glazing angle X-ray diffraction(XRD), scanning electron microscope(SEM), atomic force microscopy(AFM), uv/vis spectrophotometer, filmetrics and x-ray photoelectron spectroscopy.
    Next, we studied the ion source assist rf magnetron sputtering of the AZO films by tuning the ion source anode voltage. The lowest electrical resistivity of 6.29×10-4 Ω-cm and average visible transmittance of 93.0 % were found when the films were deposited at 600 ℃ and the ion source anode voltage was 30 V .
    Finally, AZO thin films that were prepared by the ion beam assisted sputtering were used the transparent anode for organic solar cells. Two small molecular materials, CuPc and C60, were used as the active layer of solar cells following structure :(Glass / AZO / CuPc/C60/BCP/ Al). The characteristics of these devices were also studied in detail.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1前言 1 1-2研究動機 2 1-3研究目的 3 1-4論文架構及研究方向 3 第二章 理論與文獻回顧 5 2-1透明導電膜的原理 5 2-1-1概論 5 2-1-2透明導電膜的導電機制 6 2-1-3透明導電膜的光學性質 8 2-2氧化鋅性質 11 2-2-1氧化鋅晶格結構及特性 11 2-2-2氧化鋅薄膜摻雜鋁(AZO)之晶格結構 13 2-2-3氧化鋅薄膜摻雜鋁(AZO)之電學性質 13 2-2-4氧化鋅薄膜摻雜鋁(AZO)之光學性質 13 2-3電漿與射頻磁控濺鍍原理 15 2-3-1電漿原理 15 2-3-2射頻磁控濺鍍原理 15 2-4薄膜成核與成長理論 18 2-4-1沉積現象 18 2-4-2薄膜表面及截面型態結構 19 2-5離子源輔助鍍膜原理 20 2-6太陽能電池原理 22 2-6-1PN接面太陽能電池 22 2-6-2有機太陽能電池發電原理 25 2-7太陽能電池特性分析 28 2-7-1開路電壓(Open circuit voltage ,VOC) 28 2-7-2短路電流(Short circuit current , JSC) 28 2-7-3填充因子(Fill factor , FF) 28 2-7-4能量轉換效率(Power conversion efficiency , PCE) 30 第三章 實驗步驟與方法 31 3-1實驗流程圖 31 3-2 AZO透明導電膜製作 32 3-2-1玻璃基板之準備與清洗 32 3-2-2矽基板之準備與清洗 33 3-2-3 AZO濺鍍流程 35 3-3 AZO薄膜特性分析 37 3-3-1霍爾效應量測(Hall effect measurement) 37 3-3-2光電子光譜儀(AC-2) 37 3-3-3紫外光/可見光光譜儀(UV/VIS Spectrophotometer) 37 3-3-4反射光譜儀(Filmetrics) 38 3-3-5高解析分析電子顯微鏡(HR-AEM) 38 3-3-6場發射電子顯微鏡(FE-SEM) 38 3-3-7原子力顯微鏡(AFM) 39 3-3-8 X光繞射分析儀(XRD) 39 3-3-9 X光光電子能譜儀(HRXPS) 41 3-3-10表面粗度儀(α-step) 41 3-4有機太陽能電池材料選擇 42 3-4-1酞菁銅 Cooper Phthalocyanine (CuPc) 42 3-4-2碳六十Fullerene (C60) 43 3-4-3 Bathocuproine (BCP) 43 3-5 AZO透明導電膜玻璃清洗與圖樣化 45 3-5-1 AZO透明導電膜玻璃清洗 45 3-5-2 AZO透明導電膜玻璃圖樣化 45 3-6 太陽能電池元件製作 48 3-6-1 AZO以及ITO玻璃清洗 48 3-6-2熱蒸鍍主動層 48 3-6-3熱蒸鍍電洞與激子傳輸阻擋層 49 3-6-4熱蒸鍍鋁電極 49 3-6-5元件封裝 49 3-7照光電壓-電流量測 50 3-8接面電壓-電流量測 50 3-8-1 AZO透明導電膜玻璃圖樣化 50 3-8-2 AZO玻璃清洗 50 3-8-3熱蒸鍍CuPc 51 3-8-4電壓-電流曲線量測 51 第四章 結果與討論 52 4-1基板溫度對AZO薄膜性質之影響 52 4-1-1前言 52 4-1-2電性分析 53 4-1-3晶體結構分析 55 4-1-4表面型態分析 58 4-1-5光學性質分析 60 4-1-6鍵結與組成分析 63 4-1-7表面功函數分析 67 4-1-8優良指數 69 4-2離子源輔助鍍膜對AZO薄膜性質之影響 70 4-2-1前言 70 4-2-2電性分析 71 4-2-3晶體結構分析 72 4-2-4表面型態分析 76 4-2-5光學性質分析 80 4-2-6鍵結與組成分析 84 4-2-7表面功函數分析 92 4-2-8優良指數 93 4-3 AZO透明陽極應用於有機太陽電池 94 4-3-1前言 94 4-3-2 AZO透明陽極之基板溫度與離子源能量對元件特性之影響 94 4-3-3 AZO折射率對元件光場強度之影響 98 4-3-4 AZO薄膜與有機接面特性之討論 100 第五章 結論與未來規劃 103 5-1結論 103 5-2未來規劃 105 參考文獻 106 表目錄 表2- 1氧化鋅的基本特性28 12 表3- 1 AZO濺鍍條件 35 表3- 2離子源輔助鍍膜條件 36 表4- 1 AZO基板溫度之實驗參數 53 表4- 2 AZO離子源陽極電壓之實驗參數 70 表4- 3 AZO透明陽極之實驗參數與特性表 96 表4- 4基板600℃下不同離子源能量之AZO元件特性分析表 97 圖目錄 圖1- 1In2O3、SnO2 及ZnO材料之電阻率發展圖 2 圖2- 1透明導電膜的光穿透、反射與吸收圖 9 圖2- 2 Burstein-Moss shift diagram 10 圖2- 3 氧化鋅晶體結構圖 11 圖2- 4 靶材表面離子間之相互作用 17 圖2- 5 靶材表面磁力線與電力線之分布示意圖 17 圖2- 6 氣體壓力及基板溫度對薄膜成長之影響 19 圖2- 7 end-Hall離子源之內部物理過程示意圖 21 圖2- 8具有負載的pn接面太陽能電池 24 圖2- 9理想之太陽能電池等效電路圖 24 圖2- 10照光後電壓對電流的特性曲線 24 圖2- 11實際太陽能電池之等效電路 25 圖2- 12激子能量轉換方式36 26 圖2- 13激子傳輸途徑示意圖 27 圖2- 14總體異質接面結構37 27 圖2- 15太陽能電池光電特性曲線圖 30 圖3- 1實驗流程圖 31 圖3- 2玻璃基板清洗流程圖 33 圖3- 3 Copper Phthalocyanine 結構圖 42 圖3- 4 C60分子結構圖 43 圖3- 5 BCP 結構圖 44 圖3- 6 AZO pattern流程圖 47 圖3- 7 AZO蝕刻圖樣 47 圖3- 8元件結構 48 圖3- 9 AZO透明導電膜之接面量測蝕刻圖樣 50 圖3- 10 AZO/CuPc/AZO之I-V量測示意圖 51 圖4- 1 AZO基板溫度之載子濃度 54 圖4- 2 AZO基板溫度之遷移率 54 圖4- 3 AZO基板溫度之電阻率 55 圖4- 4 AZO不同基板溫度之θ-2θ XRD 56 圖4- 5 AZO基板溫度對XRD半高寬與晶粒尺寸之影響 56 圖4- 6 AZO薄膜應力與不同基板溫度之關係 57 圖4- 7 AZO基板溫度之GIXRD 57 圖4- 8 AZO基板溫度之SEM圖 58 圖4- 9 AZO基板溫度之AFM圖 59 圖4- 10 AZO基板溫度對表面粗糙度的影響 59 圖4- 11 AZO基板溫度之UV-VIS穿透率 60 圖4- 12 AZO基板溫度之可見光平均穿透率 60 圖4- 13 AZO基板溫度之吸收係數平方對入射光能量圖 61 圖4- 14 AZO基板溫度之光學能隙 61 圖4- 15 AZO基板溫度之折射率 62 圖4- 16 AZO基板溫度之消光係數 62 圖4- 17 AZO基板溫度之XPS(Zn)原子含量比 63 圖4- 18 AZO基板溫度之XPS(O)原子含量比 63 圖4- 19 AZO基板溫度之XPS(Al)原子含量比 64 圖4- 20 AZO基板溫度之XPS(O)元素成份分析圖 65 圖4- 21 AZO基板溫度對氧空缺相對強度的影響 66 圖4- 22 AZO基板溫度對氧化學吸附相對強度的影響 66 圖4- 23 AZO基板溫度之XPS(Al)元素成份分析圖 67 圖4- 24 AZO基板溫度對Al2O3鍵結相對強度的影響 67 圖4- 25 AZO基板溫度之表面功函數 68 圖4- 26 AZO基板溫度之氧相對比例對應表面功函數 68 圖4- 27 AZO基板溫度之優良指數 69 圖4- 28 AZO離子源陽極電壓之載子濃度 71 圖4- 29 AZO離子源陽極電壓之遷移率 72 圖4- 30 AZO離子源陽極電壓之電阻率 72 圖4- 31 AZO離子源陽極電壓之θ-2θ XRD 73 圖4- 32 AZO離子源陽極電壓對XRD半高寬之影響 74 圖4- 33 AZO離子源陽極電壓對XRD晶粒尺寸之影響 74 圖4- 34 AZO薄膜應力與離子源陽極電壓之關係 75 圖4- 35 AZO離子源陽極電壓之GIXRD 75 圖4- 36 AZO離子源陽極電壓之SEM圖(基板溫度400 ℃) 76 圖4- 37 AZO離子源陽極電壓之SEM圖(基板溫度600 ℃) 77 圖4- 38 AZO離子源陽極電壓之AFM圖(基板溫度400 ℃) 77 圖4- 39 AZO離子源陽極電壓之AFM圖(基板溫度600 ℃) 78 圖4- 40 AZO離子源陽極電壓之表面粗糙度 78 圖4- 41 AZO離子源陽極電壓之TEM圖(基板溫度600 ℃) 79 圖4- 42 AZO離子源陽極電壓之TEM晶粒尺寸分析(基板溫度600 ℃) 79 圖4- 43 AZO離子源陽極電壓之UV-VIS穿透率 80 圖4- 44 AZO離子源陽極電壓之可見光平均穿透率 81 圖4- 45 AZO離子源陽極電壓之吸收係數平方對入射光能量圖 82 圖4- 46 AZO離子源陽極電壓之光學能隙 82 圖4- 47 AZO離子源陽極電壓之折射率 83 圖4- 48 AZO離子源陽極電壓之消光係數 84 圖4- 49 AZO離子源陽極電壓之XPS(Zn)原子含量比 85 圖4- 50 AZO離子源陽極電壓之XPS(O)原子含量比 85 圖4- 51 AZO離子源陽極電壓之XPS(Al)原子含量比 86 圖4- 52 AZO離子源陽極電壓之XPS(O)元素成份分析圖(RT) 87 圖4- 53 AZO離子源陽極電壓之XPS(O)元素成份分析圖(200 ℃) 87 圖4- 54 AZO離子源陽極電壓之XPS(O)元素成份分析圖(400 ℃) 88 圖4- 55 AZO離子源陽極電壓之XPS(O)元素成份分析圖(600 ℃) 88 圖4- 56 AZO離子源陽極電壓對氧空缺相對強度的影響 89 圖4- 57 AZO離子源陽極電壓對氧化學吸附相對強度的影響 89 圖4- 58 AZO離子源陽極電壓之XPS(Al)元素成份分析圖(RT) 90 圖4- 59 AZO離子源陽極電壓之XPS(Al)元素成份分析圖(200 ℃) 90 圖4- 60 AZO離子源陽極電壓之XPS(Al)元素成份分析圖(400 ℃) 91 圖4- 61 AZO離子源陽極電壓之XPS(Al)元素成份分析圖(600 ℃) 91 圖4- 62 AZO離子源陽極電壓對Al2O3鍵結相對強度的影響 92 圖4- 63 AZO離子源陽極電壓之表面功函數 92 圖4- 64 AZO離子源陽極電壓之氧相對比例對應表面功函數 93 圖4- 65 AZO離子源陽極電壓之優量指數 93 圖4- 66 AZO在基板室溫與600 ℃下不同離子源陽極電壓之J-V曲線 95 圖4- 67 AZO不同基板溫度下離子源陽極電壓對開路電壓之影響 95 圖4- 68 AZO不同基板溫度下離子源陽極電壓對短路電流之影響 95 圖4- 69 AZO不同基板溫度下離子源陽極電壓對理想因子之影響 96 圖4- 70 AZO不同基板溫度下離子源陽極電壓對轉換效率之影響 96 圖4- 71 AZO基板溫度600 ℃下離子源陽極電壓對串並聯電阻之影響 98 圖4- 72 AZO基板溫度600 ℃下不同離子源陽極電壓之元件光場強度平方分布(入射光波長600nm) 99 圖4- 73 AZO基板溫度600 ℃下不同離子源陽極電壓之元件光場強度平方分布(入射光波長800 nm) 99 圖4- 74 AZO/CuPc/AZO之I-V量測 100 圖4- 75 AZO基板溫度600 ℃下陽極電壓0 V之AFM圖(1μm) 101 圖4- 76 AZO基板溫度600 ℃下陽極電壓30 V之AFM圖(1μm) 101 圖4- 77 AZO基板溫度600 ℃下陽極電壓40 V之AFM圖(1μm) 101 圖4- 78 AZO基板溫度600 ℃下不同陽極電壓之表面粗糙度 102

    1. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol. 20,S35–S44(2005)
    2. T. Minami, H. Nanto and S. Takata, “High conductive and transparent alumina doped zinc oxid thin films prepared by RF magnetron sputtering”, Jpn. J. Appl. Phys., 23, 280(1984)
    3. G. A. Hirata, J. Mckittrick, J. Siqueiros, O. A. Lopez, T. Cheeks, O. Contreras and J. Y. Yi, “High transmittance-low resistivity ZnO:Ga films deposited by laser ablation”, J. Vac. Sci. Technol. A, 14, 791(1996)
    4. H. Hara, I. Hanada, I. Shiro and I. Yatabe, “Properties of indim zinc oxide thin films on heat withstanding plastic substrate”, J. Vac. Sci. Technol., 22, 17(2004)
    5. L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato, R. Martins, “Role of hydrogen plasma on electrical and optical properties of ZGO, ITO and IZO transparent and conductive coatings”, Thin Solid Films, 511– 512, 295– 298(2006)
    6. D. L. Raimondi, E. Kay, “High Resistivity Transparent ZnO Thin Films”, J.Vac. Sci. Technol. 7 (1), 96-99(1969)
    7. Z. C. Zin, I. Hamberg, and C. G. Granqvist, “Optical properties of sputter‐deposited ZnO:Al thin films”, J. Appl. Phys. 64, 5117(1988)
    8. O. Klutha, B. Rech, L. Houben, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, H.W. Schock, “Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells”, Thin Solid Films, 351, 247(1999)
    9. J. Hu and R. G. Gordon, "Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition", J. Appl. Phys. 71, 880 (1992)
    10. K. C. Park, D. Y. Ma, K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin solid films, 3305, 201(1997)
    11. M. T. Young, L. S. Chul, “Effects of aluminum content and substrate temperature on the structural and electrical properties of aluminum-doped ZnO films prepared by ultrasonic spray pyrolysis”, J. Mate. Sci. : Mater. El., 11, 305(2000)
    2. Miyata, Toshihiro, Minamino, Y. Ida, S. Minami, Tadatsugu , “Highly transparent and conductive ZnO:Al thin films prepared by vacuum arc plasma evaporation”, J. Vac. Sci. Technol. A, 22, 1711(2004)
    3. F. Furusaki, J.Takhashi and K. Kodaira, “Preparation of ITO Thin Films by Sol-Gel Method”, J. Ceram. Soc. Jpn., 102 , 200-205(1994)
    4. A. O. Dikovska, P. A. Atanasov, T. R. Stoyanchov, A. T. Andreev, E. I. Karakoleva and B. S. Zafirova, “Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element”, Appl. Opt., 46, 2481(2007)
    5. J. B. Choi, J. H. Kim, K. A. Jeon and S. Y. Lee, “Properties of ITO films on glass fabricated by pulsed laser deposition”, Mater. Sci. Eng. B, 102, 376 (2003)
    6. M. Chen, Z. L. Pei, C. Sun, L. S. Wen, and X. Wang, “Surface characterization of transparent conductive oxide Al-doped ZnO films”, J. Cryst. Growth, 220, 254-262(2000)
    7. A.N.H. A1-Ajili, S.C. Bayliss, “A study of the optical, electrical and structural properties of reactively sputtered InOx and ITOx thin films”, Thin Solid Films,
    305, 116-123(1997)
    8. D. C. Paine, T. Whitson, D. Janiac, R. Beresford, and C. O. Yang, “A study of low temperature crystallization of amorphous thin film indium–tin–oxide”, J. Appl. Phys., 85, 8445(1999)
    9.史月艷,潘文輝,殷志強,“氧化銦錫(ITO)膜的光學及電學性能”,真空科學技術,第十四卷第一期,p 35(1994)。
    20. J. Ma, et al., “Preparation and characterization of ITO films on polyimide by reactive evaporation at low temperature”, Appl. Surf. Sci., 151, 239(1999)
    2 . C. Terrier , J. P. Chatelon, “Analysis of antimony doping in tin oxide thin films obtained by the sol-gel method”, J. Sol-Gel Sci. Technol., 10, 75(1997)
    22. K. H. Kim, S. W. Lee, “Effect of antimony addition on electric and optical properties of tin oxide films”, J. Am. Ceram. Soc., 77, 915(1994)
    23. A. E. Rakhshani, Y.Makdisi, H. A. Ramazaniyan, “Electronic and optical properties of fluorine-doped tin oxide films”, J. Appl. Phys., 83, 1049(1998)
    24. Watkins-Johnson Co, “Highly conductively and transparent films of tin and fluorine doped indium oxide produced by APCVD”, Thin Solid Films, 221, 166~182(1992)
    25. 楊明輝,工業材料,179期,p 134(2001)。
    26. I. Hamberg and C. G. Granqvist, “Evaporated Sn-doped 10203 films: Basic optical properties and applications to energy-efficient windows”, J. Appl. Phys., 60, 11(1986)
    27. J. Koike, K. Shimoe and H. Ieki, “1.5 GHz Low-Loss Surface Acoustic Wave Filter Using ZnO/Sapphire Substrate”, J. Appl. phys., 32, 2337-2340(1993)
    28. H. L. Hartnagel, A. K. Jagadish, “Semiconducting Transparent Thin Films”,
    published by Institute of Physics Publishing(1995)
    29. B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, third edition
    30. D. M. Mattox, “Particle bombardment effects on thin-film deposition: A review”, J. Vac. Sci. Techno. A. 7, 1105(1989)
    3 . S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, “Handbook of plasma processing technology”, Noyes publication, p.167(1990)
    32. D. S. Rickerby, A. Matthews, “Advanced Surface Coating: a handbook of surface engineering”, published by Chapman and Hall, New York, p.103(1991)
    33. J. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., 47, 399(1984)
    34. H. R. Kaufman, R. S. Robinsion, “Operation of Broad-Beam Source”, Commonwealth Scientific Corp.(1987)
    35. D. A. Neamen, “半導體物理及元件”, McGraw-Hill(第三版)
    36. 王裕文, “主要吸收層結構及電洞傳輸層對有機高分子混合型異質接面太陽能電池之影響”, 國立東華大學碩士論文
    37. 鄭弘彬, “有機無機混合太陽電池製程之研究”, 國立清華大學
    38. P. Würfel, “Physics of Solar Cells”, Wiley(2004)
    39. C. Brabec, V. Dyakonov, J. Parisi, N. S. Sariciftci, “Organic Photovoltaics (Concepts and REALIZATION)”. Springer(2003)
    40. S. S. Sun, N. S. Sariciftci, “Organic Photovoltaics (Mechanisms, Materials and Devices) ”, Marcel Dekker Inc(2005)
    4 . R. H. Friend, “Electroluminescence in conjugated polymers”, Nature , 397, 121 (1999)
    42. W. Clemens, W. Fix, J. Ficker, A. Knobloch, and A. Ullmann, “From polymer transistors toward printed electronics”, J. Mater. Res 19, 1963 (2004)
    43. G. Horowitz, “Organic thin film transistors: From theory to real devices”, J. Mater. Res 19, 1946(2004)
    44. H. Hoppe and N. S. Sariciftci, “ Organic solar cells: an overview”, J. Mater. Res 19, 1924(2004)
    45. 張自恭博士, “碳六十科學網”, (2003)
    46. C. K. J. H. Schon, and B. Batlogg, “High-Temperature Superconductivity in Lattice-Expanded C60”, Science, 293, 2432(2001)
    47. P. Peumans and S. R. Forrest , “Very-high-efficiency doubleheterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., 79, 126-128 (2001)
    48. C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams and A. K. Pradhan, “Effects of substrate temperature on the optical and electrical properties of Al:ZnO films”, Semicond. Sci. Technol., 23,085019(2008)
    49. W.Yang, Z. Wu, Z. Liu, A. Pang, Y. L. Tu, Z. C. Feng, “Room temperature deposition of Al-doped ZnO films on quartz substrates by radio-frequency magnetron sputtering and effects of thermal annealing”, Thin Solid films , 519,31-36(2010)
    50. C. Guillen, J. Herrero, “Optical, electrical and structural characteristics of Al:ZnO thin films with various thicknesses deposited by DC sputtering at room temperature and annealed in air or vacuum”, Vacuum 84, 924–929(2010)
    5 . J. F. Chang, M. H. Hon, “The effect of deposition temperature on the properties of Al-doped zinc oxide thin films,” Thin Solid Films 386, 79(2001)
    52. S. J. Tark, Y. W. Ok, M. G. Kang, H. J. Lim, W. M. Kim, D. Kim, “Effect of a hydrogen ratio in electrical and optical properties of hydrogenated Al-doped ZnO films”, J Electroceram , 23, 548–553(2009)
    53. K. M. JOHANSEN et al., “Li and OH-Li Complexes in Hydrothermally Grown Single-Crystalline ZnO”, J. Electron. Mater., 40, 4(2011)
    54. R. Cebulla, R. Wendt and K. Ellmer, “Al-doped zinc oxide films deposited by simultaneous rf and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties”, J. Appl. Phys. 83, 15(1998)
    55. T. Minami, H. Sato , H.Imamoto and S. Takata, “Substrate temperature dependence of transparent conducting Al-doped ZnO thin films prepared by magnetron sputtering ,” Jan. J. Appl. Phys. 31, 253(1992)
    56. E. Burstein, “Anomalous optical absorption limit in InSb,” Phys. Rev. 93, 632(1954)
    57. T. S. Moss, “The Interpretation of the Properties of Indium Antimonide,” Proc. Phys. Soc. B 67, 775(1954)
    58. M. Chen et al., “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films,” Appl. Surf. Sci. 158, 134-140(2000)
    59. M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films,” Thin Solid Films 280, 20(1996)
    60. K. Kawaguchi, N. Yasuoka, M. Ekawa, H. Ebe, T. Akiyama, M. Sugawara, and Y. Arakawa “Growth of Columnar Quantum Dots by Metalorganic Vapor-Phase Epitaxy,” Jan. J. Appl. Phys. 47, 4(2008)
    61. W. Tang, D. C. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process”, Thin Solid Films 238 , 83(1994)
    62. R. Jaramillo et al., “Electron Granularity and the Work Function of Transparent Conducting ZnO:Al Thin Films”, Adv. Funct. Mater., 21, 4068-4072(2011)
    63. G. Haacke, “New figure of merit for transparent conductors”,J. Appl. Phys., 47, 9(1976)
    64. P. J. Martin, H. A. Macleod, R. P. Netterfield, C. G. Pacey, and W. G. Sainty, “Ion-beam-assisted deposition of thin films”, Appl. Opt. Vol.22 , 1 , 178(1983)
    65. A. Turos, W. F. van der Weg, D. Sigurd, and J. W. Mayer, “Chande of surface composition of SiO2 layers during sputtering ”, J. Appl. Phys. 45 , 2777(1974)
    66. Y. C. Lin, M. Z. Chen, C. C. Kuo, W. T. Yen, “Electrical and optical properties of ZnO:Al film prepared on polyethersulfone substrate by RF magnetron sputtering”, Colloid Surf. A-Physicochem. Eng. Aspect, 337, 52-56(2009)
    67. Müller, Karl-Heinz, “Ion-beam-induced epitaxial vapor-phase growth: A molecular-dynamics study”, Phys. Rev. B, 35, 7906-7913(1987)
    68. C. C. Fang, F. Jones, R. R. Kola, G. K. Celler, and V. Prasad, “Stress and microstructure of sputter‐deposited thin films: Molecular dynamics simulations and experiment”, J. Vac. Sci. Technol. B 11, 2947(1993)
    69. G. B. Murdoch, S. Hinds, E. H. Sargent, S. W. Tsang, L. Mordoukhovski, and Z. H. Lu, “Aluminum doped zinc oxide for organic photovoltaics”, Appl. Phys. Lett., 94, 213301(2009)
    70. K. T. Hung, K. T. Huang, C. Y. Hsiao, and C. F. Shih,“Improving efficiency of pentacene/C60 based solar cells with mixed Interlayers”, Thin Solid Film. 519, 5270-3(2011)
    71. Nils-Krister Perssonand Olle Inganas, “Simulations of Optical Processes in Organic Photovoltaic Devices”, Organic Photovoltaic , chapter 5(2005)

    無法下載圖示 校內:2017-01-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE