簡易檢索 / 詳目顯示

研究生: 林雅其
Lin, Yea-Chyi
論文名稱: 創新電解製氫之三維金屬複合材料研究
The Innovative Study on Hydrogen Production Via Electrolysis with Three-Dimensional Metallic Compound Materials
指導教授: 賴維祥
Lai, Wei-Hsiang
共同指導教授: 吳信達
Wu, Shinn-Dar
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 106
中文關鍵詞: 製氫電極三維結構電鍍技術產氫技術電極材料
外文關鍵詞: Hydrogen Electrode, Three-Dimensional Structure, Electroplating Technology, Hydrogen Production Technology, Electrode Material
相關次數: 點閱:54下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國際能源和環境問題,以綠色能源技術為主要的突破和發展,其中為了改善能源的浩劫,本研究主要針對電解製氫多孔金屬板之復合材料技術為發展重點,並突破了傳統金屬網及電極層之電極構造,以3維電極結構具有複數孔隙,藉此可使電極具有多孔之骨架結構,並可直接外接電荷進行其反應電解,減少接觸阻抗更將提高反應速率的附加價值,並提供電解製氫最佳一新材料結構,同時解決過多液態水造成膜電阻阻抗上升現象及擴散層的問題。
    本研究係指一多孔金屬板結構運用於電解水之電極,尤指一種多孔或多孔管體形所成一孔隙骨架片結構,以超音波壓銲→化學鍍鎳→化學電鍍之3.5V為最佳鍍膜製程方法,以9cm2之反應面積製氫量可達72~90c.c./min;相較於傳統市售白金電極約9成製氫量,但在成本上可大幅下降至1/4價格。
    未來可結合太陽能及其他電力來源等製氫,運用於無人飛機上,可大幅降低其生產成本及能耗,更將大幅提多孔金屬板電極結構價值,並提高其經濟效益。

    The development of green energy, which aims to save the world from energy catastrophe, addresses international energy and environment problems. The proposed technology uses composite material of porous metal plate for hydrogen production with electrolysis. This breakthrough shifts from traditional metal mesh to electrode layer electrode structure. Therefore, the three-dimensional electrode structure has multiple pores, which forms a porous structure and directly conducts electrolysis with electric charge. The design can decrease contact resistance, increase added value of the reaction rate, and provide an optimum new structure. In addition, the design can solve the problem of excessive liquid water resistance caused by rising resistance and diffusion layer.
    The innovative electrode with porous metal structure is applied in electrolytic water treatment. The porous material or porous tube structure forms a sheet skeleton structure. In ultrasonic pressure welding  chemical nickel  3.5 V electroplated nickel is the best coating process method. In a 9 cm2 reaction area, hydrogen production runs approximately from 72 to 90 cc/min compared with traditional commercially available platinum electrode that results in about 90% hydrogen production. However, production cost substantially decreases by about 70%.
    Future projects can combine solar energy and other power sources to produce hydrogen, as used in UAV. The reduced production costs and energy consumption will greatly increase the value of porous metal plate electrode structure and improve its economic benefits.

    中文摘要.............................................. Ⅰ 英文摘要.............................................. Ⅱ 致謝................................................... Ⅴ 目錄................................................... Ⅵ 圖目錄................................................. Ⅹ 表目錄................................................. XⅤ 符號…................................................. XⅥ 第一章緒論 ….......................... 01 1-1前言 …....................... 01 1-1-1燃料電池 …...................... 05 1-1-2製氫技術 …..................... 07 1-1-2-1化石能源產氫 …................. 09 1-1-2-2生物產氫 …................. 10 1-1-2-3熱化學法產氫 …................. 11 1-1-2-4電解水製氫 …................. 11 1-1-3各種製氫技術成本比較 …................. 12 1-2研究動機 …................. 14 1-3研究目的 …................. 16 第二章文獻回顧 …................. 17 2-1傳統化石能源產氫文獻回顧 …................. 18 2-2生物產氫文獻回顧 …................. 20 2-3熱化學法產氫文獻回顧 …................. 21 2-4電解水製氫文獻回顧 …................. 23 第三章實驗流程及儀器設備 …................. 25 3-1實驗流程 …................. 25 3-3-1錫粉熔燒結成形法 …................. 26 3-1-2超音波壓銲接法 …................. 26 3-1-3化學鍍 …................. 26 3-1-4化學電鍍 …................. 28 3-2實驗設備 …................. 29 3-2-1壓合模具 …................. 29 3-2-2高溫燒結爐 …................. 30 3-2-3超音波銲接機 …................. 32 3-2-4光學顯微鏡 …................. 33 3-2-5可程式交換式直流電源供應器 …............. 33 35 3-2-6輝光放電分光儀 …................. 3-2-7掃描式電子顯微鏡 …................. 36 3-2-8交流阻抗分析儀 …................. 37 3-2-9恆電位儀 …................. 38 第四章結果與討論 …................. 40 4-1結構成形設計 …................. 40 4-2錫粉熔燒結成形法 …................. 42 4-2-1小結: …................. 47 4-3超音波壓銲接法 …................. 48 4-3-1小結 …................. 50 4-4優化條件及實驗分析 …................. 51 4-4-1膜厚量測輝光放電分光分析(GDS) ….......... 52 4-4-1-1小結 …................. 59 4-4-2晶像顯微鏡分析(OM) …................. 59 4-4-2-1小結 …................. 66 4-4-3表面粗糙分析 …................. 67 4-4-3-1小結 …................. 71 4-4-4掃描式電子顯微鏡分析(SEM) …................ 71 4-4-4-1小結 ....................... 76 4-4-5能量散射光譜儀分析(EDS) ................ 77 4-4-5-1小結 ........................... 87 4-4-6交流阻抗分析 ......................... 87 4-4-6-1小結 ......................... 89 4-4-7腐蝕電位 ........................... 90 4-4-7-1小結 ........................ 94 4-4-8長時間電解產氫 ...................... 94 4-4-8-1小結 ............................. 97 第五章結論與未來延伸運用 ............................ 98 參考文獻 ................................ 101 附件一 ................................ 106

    [1] 翁朱蓮, “電解不同水溶液製造氫氣特性的探討,”南榮技術學院工程科技研究所碩士在職專班, 2009.
    [2] 毛宗強、張勝雄、管鴻、林矩民、王鴻猷, 氫能-21世紀的綠色能源, 新文京開發出版股份有限公司, 2008.
    [3] S. Dunn, “Hydrogen Futures: Toward a Sustainable Energy System,” Hydrogen Energy, Vol.27, pp.235-264,2002.
    [4] 王革華、艾德生, 新能源概論, 五南圖書出版股份有限公司, 2008.
    [5] 翁朱蓮,“電解不同水溶液製造氫氣特性的探討,”南榮技術學院工程科技研究所碩士在職專班, 2009.
    [6] 曹玉佳, “鋅-空氣燃料電池陰極之奈米化結構研發,”國立中正大學化學工程研究所碩士論文, 2007.
    [7] 黃植葳, “燃料電池不銹鋼雙極板之成型性與流道設計,”國立成功大學航空太空工程學系, 2016.
    [8] J.Larminie and A.Dicks, Fuel Cell Systems Explained: John Wiley & Sons Ltd, 2003.
    [9] 林明源, “利用外部作用增加水電解產氫效率之研究,”中央大學機械工程博士論文, 2013.
    [10] M.S.Casper,“Hydrogen Manufacture by Electrolysis,Thermal Decomposition and Unusual Techniques,”Noyes Data Corporation,New Jersey, 1978.
    [11] 董成祥, “電解水產氫之電解液流場效應分析,”國立中央大學能源工程研究所, 2008.
    [12] 曲新生、陳發林, 氫能技術, 五南圖書出版股份有限公司, 2006.
    [13] 翟秀靜、劉奎仁、韓慶, 新能源技術, 北京:化學工業出版社, 2005.
    [14] 曲新生、陳發林、呂錫民, 產氫與儲氫技術, 五南圖書出版股份有限公司, 2007.
    [15] 池風東, 實用氫化學, 北京:國防工業出版社, 1996.
    [16] Hydrogen from Natural Gas and Coal:The Road to a Sustainable Energy Future,HydrogenCoordination Group,Office of Fossil Energy, USA,Jun,2003.
    [17] National Hydrogen Energy Roadmap,Based on the Results of the National Hydrogen Energy Roadmap Workshop,United States Department of Energy November, Washington,DC,2002.
    [18] 蘇脩聖, “多孔介質燃燒實驗探討不同氫氣火焰形態下熱傳機制對燃燒特性與氮氧化物生成之影響研究,”國立成功大學機械工程學系博士論文, 2016.
    [19] M. Menor, S. Sayas, A.Chica, “Natural Sepiolite Promoted with Ni as New and Efficient Catalyst for the Sustainable Production of Hydrogen by Steam Reforming of the Biodiesel By-Products Glycerol,” Original Research Article Fuel, Vol.193, pp.351-358, 2017.
    [20] Ling Wei, Mingming Zhu, Yu Ma, Zhezi Zhang, Dongke Zhang, “Hydrogen Production by Methane Cracking Over Xiaolongtan Lignite Chars: The Role of Mineral Matter,” Original Research Article Fuel, Vol.183, pp.345-350, 2016.
    [21] Natalia Howaniec, Adam Smolin´ ski, “Effect of Fuel Blend Composition on the Efficiency of Hydrogen-Rich Gas Production in Co-Gasification of Coal and Biomass,” Original Research Article Fuel, Vol.128, pp. 442–450, 2014.
    [22] B.T. Maru, F. López, S.W.M. Kengen, M. Constantí, F. Medina, “Dark Fermentative Hydrogen and Ethanol Production from Biodiesel Waste Glycerol Using a Co-Culture of Escherichia Coli and Enterobactersp,” Original Research Article Fuel, Vol.186, pp.375-384, 2016.
    [23] Saurabh Jyoti Sarma, Satinder Kaur Brar, Eduardo Bittencourt Sydney, Yann Le Bihan,Gerardo Buelna,Carlos Ricardo Soccol,“Microbial Hydrogen Production by Bioconversion of Crude Glycerol: A Review,” International Journal of Hydrogen Energy, Vol.37, pp.6473-6490, 2012.
    [24] Zhihong Ma, Chan Li, Haijia Su,“Dark Bio-Hydrogen Fermentation by an Immobilized Mixed Culture of Bacillus Cereus and Brevumdimonas Naejangsanensis,”Renewable Energy,Vol.105, pp.458-464, 2017.
    [25] Lidia Protasova, Frans Snijkers,“Recent Developments in Oxygen Carrier Materials for Hydrogen Production ViaChemical Looping Processes,” Original Research Article Fuel, Vol.181, pp.75–93, 2016.
    [26] Koen Michiels, Jeroen Spooren, Vera Meynen,“Production of Hydrogen Gas from Water by the Oxidation of Metallic Iron Under Mild Hydrothermal Conditions,Assisted by in Situ Formed Carbonate Ions,” Original Research Article Fuel, Vol.160, pp.205–216, 2015.
    [27] Ays‚egu¨lAbus‚oglu, Emrah Ozahi, A.Ihsan Kutlar, Sinan Demir,“Exergy Analyses of Green Hydrogen Production Methods from Biogas-BasedElectricity and Sewage Sludge,” International Journal of Hydrogen Energy, pp.1-11,2017.
    [28] S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch,“Over 18% Solar Energy Conversion to Generation of Hydrogen Fuel;Theory and Experiment for Efficient Solar Water Splitting,” International Journal of Hydrogen Energy, Vol.26, pp.653-659, 2001.
    [29] M.P. Marčeta, D.Lj. Stojić, D.P. Šaponjić, N.I. Potkonjak, and Š.S. Miljanić,“Comparison of Different Electrode Materials–Energy Requirements in the Electrolytic Hydrogen Evolution Process,”Journal of Power Sources, Vol.157, pp.758-764, 2006.
    [30] P.K. Dubey,A. S.K. Sinha,S. Talapatra,N. Koratkar,P.M. Ajayan and O.N. Srivastava,“Hydrogen Generation by Water Electrolysis Using Carbon Nanotube Anode,”International Journal of Hydrogen Energy, Vol.35,pp.3945-3950,2010.
    [31] R.F. de Souza, J.C. Padilha, R.S. Gonçalves, and J.R. Berthelot,“Dialkylimidazolium Ionic Liquids as Electrolytes for Hydrogen Production from Water Electrolysis,”Electrochemistry Communications,Vol.8, pp.211-216, 2006.
    [32] I.H. Cardona, E. Ortega, J.G. Anto´n, V.P. Herranz,“Assessment of the Roughness Factor Effect and the Intrinsic Catalytic Activity for Hydrogen Evolution Reaction on Ni-Based Electrodeposits,”International Journal of Hydrogen Energy, Vol.36,pp.9428-9438,2011.
    [33] X.T. Yu,M.Y. Wang,Z. Wang,X.H. Gong and Z.C. Guo,“3D Multi-Structural Porous NiAg Films with Nan Architecture Walls:High Catalytic Activity and Stability for Hydrogen Evolution Reaction,” Electrochemical Acta, Vol.211, pp.900–910, 2016.

    下載圖示 校內:2022-11-21公開
    校外:2022-11-21公開
    QR CODE