簡易檢索 / 詳目顯示

研究生: 鄭貿薰
Cheng, Mao-Hsun
論文名稱: 藍相液晶畫素電路與閘極驅動電路設計於次世代薄膜電晶體液晶顯示器
Designs of Blue-Phase Liquid Crystal Pixel Circuits and Gate Driver Circuits for Next-Generation Thin-Film Transistor Liquid Crystal Displays
指導教授: 林志隆
Lin, Chih-Lung
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 79
中文關鍵詞: 藍相液晶光穿透度閘極驅動電路臨界電壓飄移時脈饋入
外文關鍵詞: Blue-phase liquid crystal, clock feed-through effect, gate driver circuit, threshold voltage shift, transmittance
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藍相液晶因具有次毫秒之反應時間、廣視角與不需配向膜以節省成本等優點,被視為是下一世代的液晶顯示技術之一。然而藍相液晶需高達30伏特以上之操作電壓才足以展現其最大之光穿透度,但現行顯示器資料驅動電路的最大輸出電壓卻僅約15伏特。更改畫素電極形狀與提升藍相液晶之克爾常數為降低其操作電壓於15伏特甚至10伏特以下的有效方法,但後者會使得藍相液晶之等效電容大幅增加,增加其被充電的困難度。傳統1T2C畫素電路並無法克服上述兩者任一之情況。而現今無論是液晶面板或是有機發光二極體面板皆會以薄膜電晶體實現的閘極驅動電路操作二維的畫素矩陣,但薄膜電晶體於長時間使用下的臨界電壓飄移與其寄生電容對閘極驅動電路輸出節點造成之時脈饋入效應都會導致輸出波型不穩定與電路的操作失效。
    為了解決上述問題,本論文提出三個新式藍相液晶畫素電路與三個新式閘極驅動電路。第一個電路為針對高操作電壓藍相液晶、採用非晶氧化銦鎵鋅薄膜電晶體之3T2C畫素架構,其以一個提供三個電壓準位之訊號線搭配現行資料驅動電路,利用電荷分享的方式使得施加於藍相液晶的最高電壓可提升至20伏特以增加藍相液晶穿透度。模擬結果證明此電路設計適用於更新頻率120赫茲、解析度為Full High Definition (FHD, 1920 × 1080)之操作規格。相較於傳統1T2C畫素電路,此新式電路雖然能產生較高的電壓值,但是此結果尚不足以使藍相液晶展示其最高之光穿透度。為進一步改善前述的情況,則提出第二個為同樣採用非晶氧化銦鎵鋅薄膜電晶體之2T3C畫素架構,其利用兩條電容耦合用訊號線且同樣配合現行資料驅動電路之電壓輸出規格,即使得藍相液晶所能夠接受到的最高電壓大幅提升至30伏特,足以致使藍相液晶展現其最高穿透度而改善面板亮度不足之問題。此設計也被實際導入面板而製造出一10.1吋之展示機並且成功點亮。第三個電路則是聚焦於低操作電壓藍相液晶所面臨高等效電容之問題而提出一採用非晶氧化銦鎵鋅薄膜電晶體之2T3C畫素架構與實際之資料驅動電路搭配,藉由電容耦合的方式抬升開關電晶體之閘極電壓以大幅提升畫素充放電能力。與傳統1T2C畫素結構相比,此電路即使於更新頻率120赫茲、解析度為FHD之操作規格下,仍然能夠將藍相液晶充電至預期的資料電壓值。第四個電路為一採用非晶矽薄膜電晶體之10T1C閘極驅動電路,目的為應用在大尺寸之面板,此利用兩組低頻且互為反向之交流訊號交互穩定電路之輸出節點並同時施加交流反向偏壓於非晶矽薄膜電晶體以抑制臨界電壓的飄移,且整體的功率消耗也因為低頻的操作得到改善。在歷經840小時於攝氏100度的量測環境下,電路輸出波型的上升與下降時間皆維持高度的一致性且單級之功率消耗僅為98.7微瓦。第五個電路是一採用非晶矽薄膜電晶體之12T1C閘極驅動電路,希冀能應用在大尺寸之面板,其藉由時脈訊號的調整切換可應用於較低速操作之二維畫面顯示或者是較高速操作之三維畫面顯示。量測結果證明此架構能夠於攝氏100度運作240個小時,且應用於二維及三維畫面顯示之波型皆無失真且維持高度的穩定性。第六個電路則是應用高電子遷移率、高電性穩定之低溫多晶矽薄膜電晶體設計一極精簡之3T2C閘極驅動電路,主要應用目標為小尺寸的行動裝置面板,該結構以反向電容耦合的方式抵銷由寄生電容造成之時脈饋入效應並將上拉電晶體同時作為穩壓電晶體之用途,此設計可以大幅減少所需的電晶體數量使面板的邊框達到極致窄化的特色。模擬結果顯示所提出的概念能有效地以簡易的電路設計抑制輸出波型的雜訊,且電路佈局面積僅為119微米乘上68微米。

    The blue-phase liquid crystal (BPLC) is characterized by its sub-millisecond response time, wide viewing angle, and no need for alignment layers, and therefore considered as one of the next-generation display technologies. However, to obtain the peak transmittance of BPLC, a high operating voltage (above 30 V) is necessary. Unfortunately, data driver integrated circuits (ICs) practically used in the display industry only provide a maximum output voltage of around 15 V. Changing shapes of pixel electrodes and enlarging the Kerr constant of BPLC are effective to decrease the operating voltage below 15 V or even 10 V, but the latter approach also results in increase in the effective capacitance of BPLC. The conventional one-transistor two-capacitor (1T2C) pixel circuit is no longer able to overcome either situation. On other hand, both LC and organic light-emitting diode (OLED) pixel arrays are nowadays driven by thin-film-transistor-based (TFT-based) gate driver circuits on glass substrates. Nevertheless, threshold voltage shifts in TFTs and/or parasitic capacitors, inducing the clock feed-through effect, bring about unstable output waveforms and circuit malfunctions.
    This dissertation presents three novel BPLC pixel circuits and three novel gate driver circuits, whose effectiveness is verified by simulations and measurements. In terms of BPLC with a high operating voltage, the first one develops an amorphous-indium-gallium-zinc-oxide-TFT-based (a-IGZO-TFT-based) 3T2C pixel circuit which employs a three-voltage-level signal and the specification of practical data driver ICs to perform charge-sharing method, raising the maximum voltage across BPLC to 20 V to achieve a higher transmittance compared with that obtained by 1T2C pixel circuit. Simulation results indicate this circuit is suitably operated at a 120-Hz frame rate and the resolution of Full High Definition (FHD, 1920 × 1080). However, 20 V is still not high enough to secure the peak transmittance of BPLC. The second pixel circuit is an a-IGZO-TFT-based 2T3C structure which greatly increases the maximum voltage across BPLC to 30 V by adopting two two-voltage-level signals with the capacitor coupling method. The circuit also leads to a successful 10.1-inch prototype BPLCDs. Considering the low-operating-voltage and high-effective-capacitance BPLC cooperating with the practical data driver ICs, the third circuit is also based on a-IGZO TFTs and a 2T3C pixel structure in which the gate voltage of the switch TFT is up boosted, greatly enhancing charge and discharge capabilities of a pixel. In contrast to 1T2C pixel circuit, simulation results demonstrate that this circuit is more capable of charging BPLC to expected data voltages at a 120-Hz frame rate and the FHD resolution. The fourth is an a-Si-TFT-based low-power 10T1C gate driver circuit which utilizes two low-frequency signals to apply a reverse bias to TFTs to suppress threshold voltage shifts and alternately stabilize output waveforms. Measurement results show that this circuit can be stably operated at 100 ºC for over 840 hours, and its power consumption per stage is only 98.7 µW. The next one is an a-Si-TFT-based 12T1C gate driver circuit which is able to work at either a low speed for 2D images or a high speed for 3D images. Measurement results reveal that the circuit alternately being switched between the 2D mode and the 3D mode can sustain 100-ºC operation for over 240 hours. The last is a low-temperature-polycrystalline-silicon-TFT-based (LTPS-TFT-based) 3T2C gate driver circuit aiming at ultra-narrow-bezel display panels. This structure uses an inverse-coupling method to restrain the noise caused by the clock feed-through effect and exploits the pull-up TFT to periodically stabilize the output waveform. The layout area is only 119 µm × 68 µm.

    Contents Pages Chinese Abstract i English Abstract iii Acknowledgement v Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1.1 Background 1 1.2 Motivation 3 1.3 Dissertation organization 10 Chapter 2 Design of Pixel Circuits for Blue-Phase Liquid Crystal Displays 2.1 Issues of prior arts 11 2.2 Circuit schematics and operations 12 2.3 Results and discussion 14 2.4 Summary 16 Chapter 3 Novel Dual-Coupling Pixel Circuit to Achieve High Transmittance of Blue-Phase Liquid Crystal 3.1 Issues of prior arts 20 3.2 Circuit schematic and operation 21 3.3 Results and discussion 22 3.4 Summary 23 Chapter 4 Low-Power Gate Driver Circuit with Threshold-Voltage-Shift Recovery and Synchronously-Controlled Pull-Down Scheme 4.1 Issues of prior arts 27 4.2 Circuit schematic and operation 28 4.3 Results and discussion 30 4.4 Summary 33 Chapter 5 2-D–3-D Switchable Gate Driver Circuit for TFT-LCD Applications 5.1 Issues of prior arts 41 5.2 Circuit schematic and operation 42 5.3 Results and discussion 45 5.4 Summary 48 Chapter 6 Highly Simple Gate Driver Circuit Based on Low-Temperature Polycrystalline Silicon Thin-Film Transistors for Narrow-Bezel Display Applications 6.1 Issues of prior arts 58 6.2 Circuit schematic and operation 59 6.3 Results and discussion 60 6.4 Summary 62 Chapter 7 Conclusion and future work 7.1 Conclusion 66 7.2 Future work 68 References 70 Biography 76 Publication list 77

    [1] C. T. Liu, “Revolution of TFT LCD technology,” J. Display Technol., vol. 3, no. 4, pp. 342–350, Dec. 2007.
    [2] M. Kim, M. S. Kim, B. G. Kang, M. K. Kim, S. Yoon, S. H. Lee, Z. Ge, L. Rao, S. Gauza, and S. T. Wu, “Wall-shaped electrodes for reducing the operation voltage of polymer-stabilized blue phase liquid crystal displays,” J. Phys. D: Appl. Phys., vol. 42, no. 23, p. 235502, Dec. 2009.
    [3] Z. Ge, S. Gauza, M, Jiao, H, Xianyu, and S, T, Wu, “Electro-optics of polymer-stabilized blue phase liquid crystal displays,” Appl. Phys. Lett., vol. 94, no. 10, p. 101104, Mar. 2009.
    [4] L. Rao, Z. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett., vol. 95, no. 23, p. 231101, Dec. 2009.
    [5] M. Jiao, Y. Li, and S. T. Wu, “Low voltage and high transmittance blue-phase liquid crystal displays with corrugated electrodes,” Appl. Phys. Lett., vol. 96, no. 1, p. 011102, Jan. 2010.
    [6] L. Rao, H. C. Cheng, and S. T. Wu, “Low voltage blue-phase LCDs with double-penetrating fringe fields,” J. Display Technol., vol. 6, no. 8, pp. 287–289, Aug. 2010.
    [7] Y. Li and S. T. Wu, “Transmissive and Transflective blue-phase LCDs with enhanced protrusion electrodes,” J. Display Technol., vol. 7, no. 7, pp. 359–361, July 2011.
    [8] H. Lee, H. J. Park, O. J. Kwon, S. J. Yun, J. H. Park, S. Hong, and S. T. Shin, “The world’s first blue phase liquid crystal display,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2011, pp. 121–124.
    [9] C. P. Chen, Y. Su, Y. Chen, Y. Sun, and Z. Zhang, “Ultra-high transmittance blue phase LCD with double in-plane switching electrodes,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2012, pp. 1389–1392.
    [10] C. L. Lin, M. H. Cheng, C. D. Tu, P. C. Lai, and P. C. Lai, “Design of pixel circuits for blue-phase liquid crystal displays,” J. Display Technol., vol. 12, no. 2, pp. 153–157, Feb. 2016.
    [11] C. L. Lin, C. D. Tu, M. H. Cheng, C. C. Hung, C. H. Lin, and N. Sugiura, “Novel dual-coupling pixel circuit to achieve high transmittance of blue-phase liquid crystal,” IEEE Electron Device Lett., vol. 36, no. 4, pp. 354–356, Apr. 2015.
    [12] C. Y. Tsai, F. C. Yu, Y. F. Lan, P. J. Huang, S. Y. Lin, Y. T. Chen, T. I. Tsao, C. T. Hsieh, B. S. Tseng, C. W. Kuo, C. H. Lin, C. C. Kuo, C. H. Chen, H. Y. Hsieh, C. T. Chuang, N. Sugiura, C. L. Lin, and M. H. Cheng, “Distinguished paper: a novel blue phase liquid crystal display applying wall-electrode and high driving voltage circuit,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2015, pp. 542–544.
    [13] C. L. Lin, C. E. Wu, M. H. Cheng, B. S. Tzeng, C. H. Lin, N. Sugiura, and S. T. Wu, “New blue-phase LCD driving pixel circuit for a-IGZO TFT with large operation voltage,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2014, pp. 1157–1159.
    [14] P. C. Lai, M. H. Cheng, C. D. Tu, and C. L. Lin, “New pixel circuit based on a-IGZO TFTs for blue-phase LCDs,” in Proc. Int. Display Workshops, 2013, pp. 1456–1458.
    [15] P. C. Lai, M. H. Cheng, P. C. Lai, N. Sugiura, C. H. Lin, and C. L. Lin, “Pixel circuit with fast charging capability using charge-sharing method for blue-phase liquid crystal displays,” in Proc. Int. Display Workshops, 2014, pp. 1350–1353.
    [16] C. D. Tu, C. L. Lin, J. Yan, Y. Chen, P. C. Lai, and S. T. Wu, “Driving scheme using bootstrapping method for blue-phase LCDs,” J. Display Technol., vol. 9, no. 1, pp. 3–6, Jan. 2013.
    [17] F. Maurice, H. Lebrun, N. Szydlo, U. Rossini, and R. Chaudet, “High-resolution projection valve with amorphous silicon AMLCD technology,” in Proc. SPIE, vol. 3296, pp. 92–99, Apr. 1998.
    [18] W. Benzarti, F. Plais, A. De Luca, and D. Pribat, “Compact analytical physical-based model of LTPS TFT for active matrix displays addressing circuits simulation and design,” IEEE Trans. Electron Devices, vol. 51, no. 3, pp. 345–350, May 2004.
    [19] H. Lebrun, T. Kretz, J. Magarino, and N. Szydlo, “Design of integrated drivers with amorphous silicon TFTs for small displays,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2005, pp. 950–953.
    [20] T. Miyazawa, K. Goto, and A. Hasegawa, “An improved dynamic ratio less shift register circuit suitable for LTPS-TFT LCD panels, ” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2005, pp. 1050–1053.
    [21] J. W. Choi, M. S. Kwon, J. H. Koo, J. H. Park, S. H. Kim, D. H. Oh, S. W. Lee, and J. Jang, “Distinguished student paper: noble a-Si:H gate driver with high stability,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2008, pp. 1227–1230.
    [22] M. Nakamizo, M. Yonemaru, Y. Iwase, and T. Fukaya, “A low power consumption and high reliability architecture for a-Si TFT gate driver on glass,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2010, pp. 28–31.
    [23] C. Y. Liu, C. L. Wu, Y. C. Wu, L. H. Chang, and Y. H. Lin, “A novel shift register for driving AMOLED display,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2010, pp. 1284–1286.
    [24] C. L. Lin, C. D. Tu, M. C. Chuang, and J. S. Yu, “Design of bidirectional and highly stable integrated hydrogenated amorphous silicon gate driver circuits,” J. Display Technol., vol. 7, no. 1, pp. 10–18, Jan. 2011.
    [25] K. H. Chung, B. Y. Chung, S. I. Park, and D. W. Park, “Integrated pMOS gate driver for a 3D AMOLED display,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2011, pp. 349–352.
    [26] C. L. Lin, M. H. Cheng, C. D. Tu, and M. C. Chuang, “Highly reliable integrated gate driver circuit for large TFT-LCD applications,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 679–681, May 2012.
    [27] C. L. Lin, C. D. Tu, C. E. Wu, C. C. Hung, K. J. Gan, and K. W. Chou, “Low-power gate driver circuit for TFT-LCD application,” IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1410–1415, May 2012.
    [28] C. Liao, C. He, T. Chen, D. Dai, S. Chung, T. S. Jen, and S. Zhang, “Implementation of an a-Si:H TFT gate driver using a five-transistor integrated approach,” IEEE Trans. Electron Devices, vol. 59, no. 8, pp. 2142–2148, Aug. 2012.
    [29] G. T. Zheng, P. T. Liu, M. C. Wu, M. C. Yang, L. W. Chu, and C. Y. Wu, “Low power gate driver circuits for narrow bezel panel application,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2012, pp. 1076–1078.
    [30] E. Song and H. Nam, “Programmable pulse width LTPS TFT shift register for high resolution and high frame rate active matrix flat panel displays,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2013, pp. 473–476.
    [31] D. Geng, B. S. Kim, M. Mativenga, M. J. Seok, D. H. Kang, and J. Jang, “40 um-pitch IGZO TFT gate driver for high-resolution rollable AMOLED,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2013, pp. 927–930.
    [32] C. L. Lin, M. H. Cheng, C. D. Tu, C. C. Hung, and J. Y. Li, “2-D–3-D switchable gate driver circuit for TFT-LCD applications,” IEEE Trans. Electron Devices, vol. 61, no. 6, pp. 2098–2105, June 2014.
    [33] H. Jeong, B. K. Choi, H. J. Chung, S. G. Lee, Y. M. Ha, and J. Jang, “Long life-time amorphous-InGaZnO TFT-based shift register using a reset clock signal,” IEEE Electron Device Lett., vol. 35, no. 8, pp. 844–846, Aug. 2014.
    [34] C. L. Lin, M. H. Cheng, C. D. Tu, C. E. Wu, and F. H. Chen, “Low-power a-Si:H gate driver circuit with threshold-voltage-shift recovery and synchronously-controlled pull-down scheme, ” IEEE Trans. Electron Devices, vol. 62, no. 1, pp. 136–142, Jan. 2015.
    [35] C. L. Lin, F. H. Chen, W. C. Ciou, Y. W. Du, C. E. Wu, and C. E. Lee, “Simplified gate driver circuit for high-resolution and narrow-bezel thin-film transistor liquid crystal display applications,” IEEE Electron Device Lett., vol. 36, no. 8, pp. 808–810, Aug. 2015.
    [36] Y. S. Tsai, C. Y. Liu, C. C. Tseng, and L. W. Shih, “A slim border design for wearable display: using novel p-type shift register and optimal layout arrangement,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2015, pp. 64–66.
    [37] C. Liao, Z. Hu, J. Li, S. Cao, and S. Zhang, “A simple low temperature workable a-Si:H TFT integrated gate driver on array,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2015, pp. 1316–1319.
    [38] S. H. Moon, I. Haruhisa, K. Kim, C. W. Park, H. J. Chung, S. H. Kim, B. K. Kim, and O. Kim, “Highly robust integrated gate-driver for in-cell touch TFT-LCD driven in time division driving method,” J. Display Technol., vol. 12, no. 5, pp. 435–441, May 2016.
    [39] C. L. Lin, C. E. Wu, F. H. Chen, P. C. Lai, and M. H. Cheng, “Highly reliable bidirectional a-InGaZnO thin-film transistor gate driver circuit for high-resolution displays,” IEEE Trans. Electron Devices, vol. 63, no. 6, pp. 2405–2411, June 2016.
    [40] C. Y. Li, Y. S. Huang, Y. Y. Chen, C. W. Chen, C. N. Yeh, and N. Sugiura, “A novel gate driver circuit design for ultra slim border,” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2016, pp. 1276–1278.
    [41] Y. H. Tai, J. W. Tsai, H. C. Cheng, and F. C. Su, “Instability mechanisms for the hydrogenated amorphous silicon thin-film transistors with negative and positive bias stresses on the gate electrodes,” Appl. Phys. Lett., vol. 67, no. 1, pp. 76–78, July 1995.
    [42] B. C. Hseih, M. K. Hatalis, and D. W. Greve, “Low-temperature polycrystalline silicon thin-film transistors for displays,” IEEE Trans. Electron Devices, vol. 35, no. 11, pp. 1842–1845, Nov. 2015.
    [43] A. Nathan, S. Lee, S. Jeon, and J. Robertson, “Amorphous oxide semiconductor TFTs for displays and imaging,” J. Display Technol., vol. 10, no. 11, pp. 917–927, Nov. 2014.
    [44] D. Shim, K. Kim, Y. Cho, J. Choi, S. Yee, T. Kim, S. Cho, J. Lee, G. Kang, M. Jun, and I. Kang, “Novel pixel structure for quadrupling of pixel voltage, ” in Soc. Inf. Display Symp. Dig. Tech. Papers, 2014, pp. 713–715.
    [45] J. K. Song and S. B. Park, “Assessment of image quality degraded by tone rendering distortion,” J. Display Technol., vol. 7, no. 7, pp. 365–372, July 2011.
    [46] T. L. Ting, C. Y. Chen, S. W. Tsao, M. J. Lu, Y. Y. Kung, W. H. Hsu, and J. J. Su, “Vertically aligned in-plane-switching LCD mode with novel pixel circuits,” J. Display Technol., vol. 9, no. 10, pp. 832–839, Oct. 2013.
    [47] L. Y. Chen. Y. Y. Chen, H. L. Hou, Y. Mo, and C. Y. Chiu, “Development of the world-wide largest 110” 4K2K 3D TFT-LCD display,” in Soc. Inf. Display Symp. Dig. Tech. Papers, pp. 100-103, 2013.
    [48] J. G. Lu, X. F. Sun, Y. Song, and H. P. D. Shieh, “2-D/3-D switchable display by Fresnel-type LC lens,” J. Display Technol., vol. 7, no. 4, pp. 215-219, Apr. 2011.

    無法下載圖示 校內:2022-01-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE