| 研究生: |
侯宗佑 Hou, Tsung-Yu |
|---|---|
| 論文名稱: |
針對延遲轉換錯誤之高壓縮診斷向量產生流程 An Efficient Procedure to Generate Highly Compact Diagnosis Patterns for Transition Faults |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 錯誤診斷 、延遲轉換錯誤 、診斷向量產生 、多錯誤對診斷 |
| 外文關鍵詞: | Fault diagnosis, Transition fault, Diagnosis pattern generation, Multi-pair diagnosis |
| 相關次數: | 點閱:99 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們提出了一個診斷向量產生流程,目的在於可以在少量的診斷向量讓非等效延遲轉換錯誤之間有不同的輸出響應,並且能有效的辨認是否延遲轉換錯誤之間為等效錯誤。這流程主要由兩個主要的方法組成。第一個基於使用者自訂錯誤失活方法(user-defined-fault-based inactivation method)能把分開延遲轉換錯誤之間的問題轉換成偵測一堆使用者自訂的錯誤,並且所有的錯誤能同時被一次自動向量生成軟體產生。第二個統一錯誤對轉換方法能(unified fault-pair transformation method)把兩個延遲轉換錯誤的分開問題轉換成偵測一個延遲轉換錯誤,並且一樣能處理這些錯誤經由一次的自動向量生成軟體產生。藉由這兩個方法我們可以得到少量的診斷向量。當自動向量生成軟體的回溯次數太少時,會有少數的錯誤對沒辦法被上述兩個方法處理。我們利用布林可滿足方法來處理那些錯誤對,而辨識結果都是等效錯誤對。我們利用ISCAS’89和IWLS’05電路進行實驗,結果顯示我們能辨認這兩類電路所有的延遲轉換錯誤,讓可分開的錯誤能有不同的響應或者辨認錯誤是否為等效錯誤。
In this thesis, we presents a diagnosis pattern generation procedure that not only can generate very compact diagnosis patterns to distinguish nonequivalent transition faults, but also can identify equivalent transition faults efficiently. This procedure mainly consists of two major methods. The first one is a user-defined-fault-based inactivation method (UDFIM) that transforms the problem of distinguishing all transition faults into that of detecting a set of user-defined faults (UDFs) and then deals with all these faults at a time by using an ATPG tool. The second one is a unified fault-pair transformation method (UFPTM) that transforms the problem of distinguishing two transition faults into the problem of detecting a transition fault and then process all these faults also in one ATPG run. By these two methods, very compact diagnosis pattern sets can be obtained. For the very few fault pairs that cannot be handled by these two methods when the backtracking limit of ATPG is low, we employ a SAT-based method to deal with these pairs and show that they are all equivalent-fault pairs. Experimental results on ISCAS’89 and IWLS’05 benchmark circuits show that this is the first work that can distinguish all distinguishable transition faults and identify all equivalent transition faults for ISCAS’89 and IWLS’05 benchmark circuits.
[1] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability, Morgan Kaufmann, 2006.
[2] W.-T. Cheng, B. Benware, R. Guo, K.-H. Tsai, T. Kobayashi, K. Maruo, M. Nakao, Y. Fukui and H. Otake, "Enhancing Transition Fault Model for Delay Defect Diagnosis" in Proc. Asian Test Symp., 2008, pp. 179-184.
[3] V. J. Mehta, Z. Wang, M. Marek-Sadowska, K. H. Tsai, and J. Rajski, ”Delay fault diagnosis for non-robust test,” in Proc. 7th Int. Symp. Quality Electron. Des., Mar. 2006, pp. 463–472.
[4] Krstic, L.-C. Wang, K.-T. Cheng, J.-J. Liou, T.M. Mak, “Enhancing diagnosis resolution for delay defects based upon statistical timing and statistical fault models”, Proc. Design Automation Conference, 2003. pp. 668-673.
[5] N. Tendolkar, et al., “Improving Transition Fault Test Pattern Quality through At-Speed Diagnosis”, Proc. ITC 2006, pp. 11.2
[6] Y.-Y. Chen and J.-J. Liou, "Diagnosis Framework for Locating Failed Segments of Path Delay Faults", IEEE Trans. on VLSI Systems, June 2008, pp. 755-765
[7] P.-J. Chen, Li, J.C.-M., N.-H. Tseng, “An Accurate Timing-aware Diagnosis Algorithm for Multiple Small Delay Defects” in Proc. Asian Test Symp., 2011, pp. 291-296.
[8] S. Venkataraman and S. B. Drummonds, “POIROT: A Logic Fault DiagnosisTool and Its Applications,” in Proc. Int’l Test Conf., 2000, pp.253-262.
[9] T. Bartenstein, D. Heaberlin, L. Huisman, and D. Sliwinski, "Diagnosing Combinational Logic Designs Using the Single Location At-A-Time (SLAT) Paradigm", in Proc. Intl. Test Conf., 2001, pp. 287-296.
[10] X. Yu and R. D. Blanton, “Diagnosis-Assisted Adaptive Test,” IEEE Trans. on Computer-Aided Design, Vol. 31, No. 9, pp. 1405-1416, Sep. 2012.
[11] H. Tang, S. Manish, J. Rajski, M. Keim and B. Benware, “Analyzing Volume Diagnosis Results with Statistical Learning for Yield Improvement,” in Proc. European Test Symp., 2007, pp. 145-150.
[12] S. Wang and W. Wei, “Machine learning-based volume diagnosis,” in Proc. Design Automation and Test in Europe, 2009, pp. 902-905.
[13] R. Desineni, O. Poku, and R. D. Blanton, “A logic diagnosis methodology for improved localization and extraction of accurate defect behavior,” in Proc. Int’l Test Conf., pp. 1-10, 2006.
[14] W. C. Tam and R. D. Blanton, “Physically-Aware Analysis of Systematic Defects in Integrated Circuits,” IEEE Design & Test of Computer, Vol. 29, No. 5, pp. 81-93, Oct. 2012.
[15] X. Fan, H. Tang, Y. Huang, W.-T. Cheng, S.M. Reddy and B. Benware, “Improved volume diagnosis throughput using dynamic design partitioning,” in Proc. Int’l Test Conf., 2012, pp. 1-10.
[16] P.-Y. Hsueh, S.-F. Kuo, C.-W. Tzeng, J.-N. Lee, and C.-F. Wu, “Case study of yield learning through in-house flow of volume diagnosis,” in Proc. VLSI Design, Automation and Test, 2013, pp. 1-4.
[17] S. Prabhu, M. S. Hsiao, L. Lingappan, and V. Gangaram, “An SMT-based diagnostic test generation method for combinational circuits,” in Proc. VLSI Test Symp., Hyatt Maui, HI, USA, 2012, pp. 215–220.
[18] Pomeranz and S. M. Reddy, "On Diagnosis and Diagnostic Test Generation for Pattern-Dependent Transition Faults", IEEE Trans. on Computer-Aided Design, June 2001, pp. 791-800.
[19] Bhatti, N.K.; Blanton, R.D., "Diagnostic Test Generation for Arbitrary Faults," International Test Conference, 2006. ITC '06. IEEE, vol., no., pp.1-9, Oct. 2006.
[20] Pomeranz, I., "Generation of Mixed Broadside and Skewed-Load Diagnostic Test Sets for Transition Faults," Dependable Computing (PRDC), 2011 IEEE 17th Pacific Rim International Symposium on, vol., no., pp.45-52, 12-14 Dec. 2011
[21] Anupam Bhar, Santanu Chattopadhyay, Indranil Sengupta, and Rohit Kapur, “GA based diagnostic test pattern generation for Transition Faults,” VLSI Design and Test (VDAT), 2015 19th International Symposium on, pp. 1-6, June 2015.
[22] Veneris, R. Chang, M. S. Abadir, and M. Amiri, "Fault equivalence and diagnostic test generation using ATPG," in Proc. Int. Symp. Circuits and Systems, 2004, pp. 221-224.
[23] Y. Zhang and V. D. Agrawal, “A diagnostic test generation system,” in Proc. Int’l Test Conf., 2010, pp. 1-10.
[24] J. Ye, X. Zhang, Y. Hu and X. Li, “Substantial Fault Pairs at-A-Time (SFPAT): An Automatic Diagnostic Pattern Generation Method,” in Proc. Asian Test Symp., 2010, pp. 192-197.
[25] C.-H. Wu, K.-J. Lee, W.-C. Lien, “An Efficient Diagnosis Method to Deal with Multiple Fault-Pairs Simultaneously Using a Single Circuit Model”, to appear in Proc. VLSI Test Symp., 2014.
[26] F. Zheng, K.-T. Cheng, X. Yan, J. Moondanos, and Z. Hanna, “An efficient diagnostic test pattern generation framework using Boolean satisfiability,” in ASP Design Automation Conf., 2007, pp. 288–294.
[27] Y. Higami, Y. Kurose, S. Ohno, H. Yamaoka, H. Takahashi, Y. Takamatsu, Y. Shimizu, and T. Aikyo, “Diagnostic Test Generation for Transition Faults Using a Stuck-at ATPG Tool,” in Proc. International Test Conf., 2009, pp. 16.3.
[28] Y. Zhang and V. D. Agrawal, “Reduced Complexity of Test Generation Algorithms for Transition Fault Diagnosis,” in Proc. Int’l Conf. Computer Design, 2011, pp. 96–101.
[29] K.-J. Lee and C.-H. Wu, “An Efficient Diagnosis-Aware Pattern Generation Procedure for Transition Faults,” IEEE International Test Conference, 2014, pp. 30.1, pages 1-10.
[30] Y.-C. Lin and K.-T. Cheng, “Multiple-Fault Diagnosis Based On Single-Fault Activation and Single-Output Observation,” Proc. Design Automation and Test in Europe, pp. 424-429, 2006.