研究生: |
張恩誌 Chang, En-Chih |
---|---|
論文名稱: |
改良型終端滑動模式控制於單相換流器之應用 Applications of Modified Terminal Sliding-Mode Control to Single-Phase Inverters |
指導教授: |
梁從主
Liang, Tsorng-Juu 陳建富 Chen, Jiann-Fuh |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 灰色預測 、終端滑動模式控制 、單相換流器 、積分控制器 、模糊控制 |
外文關鍵詞: | fuzzy control, grey prediction, integral controller, terminal sliding-mode control, Single-phase inverters |
相關次數: | 點閱:86 下載:11 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單相換流器已被廣泛應用於不斷電系統、光伏能量系統以及燃料電池系統。換流器之輸出電壓必須被控制來追隨正弦參考波形,因而其設計可被視為典型的追蹤問題。傳統滑動模式控制為一有效的強健追蹤控制技術且已成功使用於單相換流器系統,但是其系統狀態收斂到平衡點的時間通常是漸進的。為了達成高精確的追蹤控制,近來終端滑動模式控制提供有限的系統狀態收歛時間。然而終端滑動模式控制由於不確定值的過度估測或被估測不足時,仍然可能引起顫動以及穩態誤差的問題,這些問題將造成換流器輸出電壓的高總諧波失真以及慢的動態響應。
本論文提出灰色模糊終端滑動模式控制以及積分補償終端滑動模式控制兩個策略應用於單相換流器。此兩種策略可克服傳統終端滑動模式控制的顫動以及穩態誤差的問題,使得換流器在不同負載狀況下,具有低總諧波失真及快速響應的特性。灰色模糊終端滑動模式控制策略使用數學簡單及計算快速之灰色預測來處理傳統終端滑動模式控制之顫動以及穩態誤差問題,然後再由模糊控制來微調灰色預測之預測值。模擬與實驗結果顯示,灰色模糊終端滑動模式控制策略在非線性負載下電壓總諧波失真低於2%以及在負載暫態下可得到快速動態響應。積分補償終端滑動模式控制策略則是結合積分控制與終端滑動模式控制,積分控制器使用於負載高度非線性時來消除穩態誤差,而終端滑動模式控制仍具有限時間收斂之特性。模擬與實驗結果顯示,在非線性負載狀況下,積分補償終端滑動模式控制策略可建立電壓總諧波失真在1.5%以下,優於美國電機與電子工程師協會 (IEEE) Standard 519之諧波管制。以此兩種控制策略應用於單相換流器設計,使換流器之輸出具有優異的穩態與動態性能,可應用於精密的定位系統與光學系統中,如半導體製程、精密加工、硬式磁碟機與光碟機等場合。
Single-phase inverters have been extensively applied in uninterruptible power supply (UPS) systems, photovoltaic (PV) energy systems and fuel cell (FC) systems. Output voltage of the inverter is controlled to follow a sinusoidal reference waveform, and thus the design of the inverter can be treated as a typical tracking problem. Classic sliding-mode control (SMC) is an effective robust-tracking control technique that has been used successfully for single-phase inverter systems, but the system states’ convergence to equilibrium is normally asymptotic. For high-precision tracking control, terminal sliding-mode control (TSMC) provides finite system-state convergence time. However, TSMC still suffers from chattering and steady-state error problems when uncertainty values are overestimated or underestimated. These problems will result in high total harmonic distortion (THD) of the inverter output voltage and slow dynamic response.
This dissertation proposes grey-fuzzy TSMC and integral-compensation TSMC strategies for applications to single-phase inverter design. These control methods can overcome classic TSMC chattering and steady-state error problems and produce low THD and fast response for single-phase inverters under various load conditions. The grey-fuzzy TSMC strategy uses a mathematically simple and computationally fast grey prediction (GP) methodology to deal with chattering and steady-state error problems. Then fuzzy control is used to fine-tune the GP forecasting value. Simulation and experimental results reveal that the grey-fuzzy TSMC strategy achieves voltage THD of less than 2% in the face of nonlinear load conditions and fast dynamic response in the face of transient load conditions. The integral-compensation TSMC strategy combines integral control and TSMC. The integral controller is used to eliminate steady-state errors when the load is in a highly nonlinear condition, and TSMC still offers the property of finite-time convergence. Simulation and experimental results under nonlinear load conditions indicate that the integral-compensation TSMC strategy leads to voltage THD of less than 1.5%, which is superior to the IEEE Standard 519. Single-phase inverters using the proposed control strategies have excellent steady-state and dynamics performance characteristics. These inverters are suitable for use in precise-positioning systems and optical systems, such as semiconductor processing, precise machining, hard disk drives, optical disk drives, and so on.
[1] P. Mattavelli, “An improved deadbeat control for UPS using disturbance observers,” IEEE Trans. on Industrial Electronics, vol. 52, no. 1, pp. 206-212, 2005.
[2] M. Kojima, K. Hirabayashi, Y. Kawabata, E. C. Ejiogu, and T. Kawabata, “Novel vector control system using deadbeat-controlled PWM inverter with output LC filter,” IEEE Trans. on Industry Applications, vol. 40, no. 1, pp. 162-169, 2004.
[3] S. J. Park, F. S. Kang, M. H. Lee, and C. U. Kim, “A new single-phase five-level PWM inverter employing a deadbeat control scheme,” IEEE Trans. on Power Electronics, vol. 18, no. 3, pp. 831-843, 2003.
[4] A. Kawamura, T. Haneyoshi, and R. G. Hoft, “Deadbeat controlled PWM inverter with parameter estimation using only voltage sensor,” IEEE Trans. on Power Electronics, vol. 3, no. 2, pp. 576-583, 1988.
[5] K. L. Zhou, K. S. Low, D. Wang, F. L. Luo, B. Zhang, and Y. G. Wang, “Zero-phase odd-harmonic repetitive controller for a single-phase PWM inverter,” IEEE Trans. on Power Electronics, vol. 21, no. 1, pp. 193-201, 2006.
[6] G. Escobar, A. A. Valdez, J. Leyva-Ramos, and P. Mattavelli, “Repetitive-based controller for a UPS Inverter to compensate unbalance and harmonic distortion,” IEEE Trans. on Industrial Electronics, vol. 54, no. 1, pp. 504-510, 2007.
[7] T. S. Lee, K. S. Tzeng, and M. S. Chong, “Robust controller design for a single-phase UPS inverter using μ-synthesis,” IEE Proceedings-Electric Power Applications, vol. 151, no. 3, pp. 334-340, 2004.
[8] M. Carpita, M. Marchesoni, M. Oberti, and L. Puglisi, “Power conditioning system using sliding mode control,” Proceedings of the IEEE Power Electronics Specialists Conference, pp. 626-633, 1988.
[9] J. F. Silva and S. S. Pamlo, “Fixed frequency sliding modulator for current mode PWM inverters,” Proceedings of the IEEE Power Electronics Specialists Conference, pp. 623-629, 1993.
[10] L. Malesani, L. Rossetto, G. Spiazzi, and A. Zuccato, “An ac power supply with sliding-mode control,” Proceedings of the IEEE Industry Applications Society Annual Meeting, pp. 623-629, 1993.
[11] C. Y. Chan, “Servo-system with discrete-variable structure control,” Systems and Control Letters, vol. 17, no. 4, pp. 321-325, 1991.
[12] S. L. Jung and Y. Y. Tzou, “Sliding mode control of a closed-loop regulated PWM inverter under large variations,” Proceedings of the IEEE Power Electronics Specialists Conference, pp. 616-622, 1993.
[13] S. L. Jung and Y. Y. Tzou, “Discrete sliding-mode control of a PWM inverter for sinusoidal output waveform synthesis with optimal sliding curve,” IEEE Trans. on Power Electronics, vol. 11, no. 4, pp. 567-577, 1996.
[14] S. L. Jung and Y. Y. Tzou, “Discrete feedforward sliding mode control of a PWM inverter for sinusoidal output waveform synthesis,” Proceedings of the IEEE Power Electronics Specialists Conference, pp.552-559, 1994.
[15] K. Jezernik and D. Zadravec, “Sliding mode controller for a single phase inverter,” Proceedings of the IEEE Applied Electronics Conference and Exposition, pp. 185-190, 1990.
[16] S. J. Chiang, T. S. Tai, and T. S. Lee, “Variable structure control of UPS inverters,” IEE Proceedings-Electric Power Applications, vol. 145, no. 6, pp. 559-567, 1998.
[17] M. Zhihong, A. P. Paplinski, and H. R. Wu, “A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators,” IEEE Trans. on Automatic Control, vol. 39, no. 12, pp. 2464-2469, 1994.
[18] X. H. Yu and M. Zhihong, “Fast terminal sliding-mode control design for nonlinear dynamical systems,” IEEE Trans. on Circuits Systems-Part I: Fundamental Theory Applications, vol. 49, no. 2, pp. 261-264, 2002.
[19] X. H. Yu and M. Zhihong, “Terminal sliding modes with fast transient performance,” Proceedings of the IEEE International Conference on Decision and Control, vol. 2, pp. 962-963, 1997.
[20] D. Yue, S. Xu, and Y. Liu, “Terminal sliding mode control of high-order systems,” Proceedings of the IEEE International Conference on Industrial Technology, pp. 811-815, 1996.
[21] U. Itkis, Control Systems of Variable Structures. New York: Wiley, 1976.
[22] V. I. Utkin, Sliding Modes and Their Applications in Variable Structure Systems. Moscow, Russia: Mir, 1978.
[23] M. Zak, “Terminal attractors for addressable memory in neural network,” Physics Letters A, vol. 133, no. 1, 2, pp. 18-22, 1988.
[24] J. J. E. Slotine, “Sliding controller design for nonlinear systems,” International Journal of Control, vol. 40, no. 2, pp. 421-434, 1984.
[25] J. J. E. Slotine and S. D. Sastry, “Tracking control of nonlinear systems using sliding surface with application to robot manipulators,” International Journal of Electronics, vol. 38, no. 2, pp. 465-492, 1983.
[26] J. J. E. Slotine and W. D. Li, Applied Nonlinear Control. New Jersey: Prentice-Hall, 1991.
[27] J. U. Lee, J. Y. Yoo, and G. T. Park, “Current control of a PWM inverter using sliding mode control and adaptive parameter estimation,” Proceedings of the IEEE International Conference on Industrial Electronics, vol. 1, pp. 372-377, 1994.
[28] T. Yokoama and A. Kawamura, “Disturbance observer based fully digital controlled PWM inverter for CVCF operation,” IEEE Trans. on Power Electronics, vol. 5, pp.473-480, 1994.
[29] T. Senjyu, H. Kamifurutono, and K. Uezato, “Robust current control method with a disturbance voltage observer for a voltage source PWM inverter,” International Journal of Electronics, vol. 80, no. 2, pp. 365-375, 1996.
[30] A. Sarinana, S. Bacha, and G. Bornard, “On nonlinear observers applied to three-phase voltage source converters,” Proceedings of the IEEE Power Electronics Specialists Conference, pp. 1419-1424, 2003.
[31] H. I. Cha, S. S. Kim, M. G. Kang, and Y. H. Chung, “Real-time digital control of PWM inverter with PI compensator UPS,” Proceedings of the IEEE Industry Applications Society Annual Meeting, 1990, pp. 1124-1128.
[32] R. Caceres, R. Rojas, and O. Camacho, “Robust PID control of a buck-boost DC-AC converter,” Proceedings of the IEEE International Telecommunications Energy Conference, pp. 180-185, 2000.
[33] K. Zhang, L. Peng, Y. Kang, J. Xiong, and J. Chen, “State-feedback-with-integral control plus repetitive control for UPS inverters,” Proceedings of the IEEE Applied Electronics Conference and Exposition, vol. 1, pp. 553-559, 2005.
[34] E. D. Bolat, K. Erkan, and S. K. Postalcloglu, “Using current mode fuzzy gain scheduling of PI controller for UPS inverter,” Proceedings of the IEEE EUROCON’05, pp. 1505-1508, 2005.
[35] D. C. Tan, Y. M. Lai, C. K. Tse, and C. K. Wu, “A pulsewidth modulation based integral sliding mode current controller for boost converters,” Proceedings of the IEEE Power Electronics Specialists Conference, pp. 1-7, 2006.
[36] P. Phakamach and C. Akkaraphong, “Microcontroller-based discrete feedforward integral variable structure control for an uninterruptible power system (UPS),” Proceedings of the IEEE International Conference on Power Electronics and Drive Systems, vol. 2, pp. 1422-1427, 2003.
[37] H. Sira-Ramirez, “On the generalized PI sliding mode control of DC-to-DC power converters: A tutorial,” International Journal of Control, vol. 76, no. 9, pp. 1018-1033, 2003.
[38] J. L. Deng, “Introduction to grey system theory,” The Journal of Grey System, vol. 1, pp. 1-24, 1989.
[39] J. L. Deng, “Control problems of grey system,” Systems and Control Letters, vol. 5, pp. 288-294, 1982.
[40] S. J. Huang and C. L. Huang, “Control of an inverted pendulum using grey prediction model,” IEEE Trans. on Industry Applications, vol. 36, no. 2, pp. 452-467, 2000.
[41] H. C. Lu, “Grey prediction approach for designing grey sliding mode controller,” Proceedings of IEEE International Conference on Systems, Man and Cybernetics, 2004, vol. 1, pp. 403-408.
[42] S. L. Su, Y. C. Su, and J. F. Huang, “Grey-based power control for DS-CDMA cellular mobile systems,” IEEE Trans. on Vehicular Technology, vol. 49, no. 6, pp. 2081-2088, 2000.
[43] D. S. Yiand and R. Yang, “Grey predictor controller for DC speed control system,” The Journal of Grey System, vol. 2, no. 3, pp. 189-215, 1990.
[44] M. Lin, “An application of the GM(1,1) model: The prediction of flight safety,” The Journal of Grey System, vol. 1, no. 2, pp. 89-102, 1989.
[45] H. K. Chiang, C. A. Chen, and M. Y. Li, “Integral variable-structure grey control for magnetic levitation system,” IEE Proceedings-Electric Power Applications, vol. 153, no. 6, pp. 809-814, 2006.
[46] H. K. Chiang and C. H. Tseng, “Integral variable structure controller with grey prediction for synchronous reluctance motor drive,” IEE Proceedings-Electric Power Applications, vol. 151, no. 3, pp. 189-215, 2004.
[47] L. A. Zadeh, “Fuzzy sets,” Information Control, vol. 8, no. 3, pp. 338-353, 1965.
[48] B. R. Lin and R. G. Hoft, “Real-time digital control of PWM inverter with fuzzy logic compensator for nonlinear loads,” Proceedings of the IEEE Industry Applications Society Annual Meeting, 1993, vol. 2, pp. 862-869.
[49] E. C. Chang, T. J. Liang, J. F. Chen, and R. L. Lin, “A sliding-mode controller based on fuzzy logic for PWM inverters,” Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, vol. 2, pp. 965-968, 2004.
[50] E. Vidal-Ldiarte, L. Martinez-Salamero, F. Guinjoan, J. Calvente, and S. Gomariz, “Sliding and fuzzy control of a boost converter using an 8-bit microcontroller,” IEE Proceedings-Electric Power Applications, vol. 151, no. 1, pp. 5-11, 2004.
[51] S. Gomariz, E. Alarcon, F. Guinjoan, E. Vidal-ldiarte, and L. Martinez-Salamero, “Piecewise PWM-sliding global control of a boost switching regulator by means of first-order Takagi-Sugeno fuzzy control,” Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 3, pp. 715-718, 2001.
[52] P. Z. Lin, C. M. Lin, C. F. Hsu, and T. T. Lee, “Type-2 fuzzy controller design using a sliding-mode approach for application to DC-DC converters,” IEE Proceedings-Electric Power Applications, vol. 152, no. 6, pp. 1482-1488, 2005.
[53] Y. Shi and P. C. Sen, “Application of variable structure fuzzy logic controller for DC-DC converters,” Proceedings of the IEEE International Conference on Industrial Electronics, vol. 1, pp. 2026-2031, 2001.
[54] Y. Y. Tzou and R. S. Ou, “DSP-based feedforward fuzzy control of a PWM inverter for AC voltage regulation,” Journal of Control Technology, vol. 2, no. 4, 1994.
[55] W. H. Chen, M. S. Tsai, and H. L. Kuo, “Distribution system restoration using the hybrid fuzzy-grey method,” IEEE Trans. on Power Systems, vol. 20, no. 2, pp. 199-205, 2005.
[56] C. H. Tsai and H. C. Lu, “Design and implementation of a DSP-based grey-fuzzy controller for induction motor drive,” Journal of Electrical Machines and Power Systems, vol. 28, pp. 373-384, 2000.
[57] H. C. Lu and C. H. Tsai, “Grey-fuzzy implementation of direct torque control of induction machines,” Journal of Electrical Machines and Power Systems, vol. 28, pp. 1127-1139, 2000.
[58] H. M. Feng and C. C. Wong, “A on-line rule tuning grey prediction fuzzy control system design,” Proceedings of the World Congress on Computational Intelligence, vol. 2, pp. 1316-1321, 2002.
[59] E. Ho and P. Sen, “Control dynamics of speed drive systems using sliding mode controllers with integral compensation,” IEEE Trans. on Industry Applications, vol. 27, no.5, pp. 883-892, 1991.
[60] T. L. Chern, J. Chang, C. H. Chen, and H. T. Su, “Microprocessor-based modified integral discrete variable-structure control for UPS,” IEEE Trans. on Industrial Electronics, vol. 46, no. 2, pp. 340-348, 1999.
[61] T. Chern and Y. Wu, “Design of integral variable structure controller and application to electrohydraulic velocity servo systems,” IEE Proceedings-Electric Power Applications, vol. 138, no. 5, pp. 439-444, 1991.
[62] F. C. Clark, “PID algorithms and their computer implementation,” IEEE Trans. on Instrumentation Measurement Control, vol. 6, pp. 305-316, 1984.
[63] W. K. Ho, K. W. Lim, and W. Xu, “Optimal gain and phase margin tuning for PID controllers,” Automatica, vol. 34, pp. 1009-1014, 1998.
[64] D. Sbarbaro, “Application of integral variable structure controller,” Proceedings of the IEEE International Conference on Control Applications, pp. 673-678, 1996.
[65] Drazenovia, “The invariance condition in variable structure systems,” Automatica, vol. 5, no. 3, pp. 287-295, 1969.
[66] K. D. Young, V. I. Utkin, and U. Ozguner, “A control engineer’s guide to sliding mode control,” IEEE Trans. on Control Systems Technology, vol. 7, pp. 328-342, 1999.
[67] H. Sira-Ramirez, “On the dynamical sliding mode control of nonlinear systems,” International Journal of Control, vol. 57, no. 5, pp. 1039-1061, 1989.
[68] V. I. Utkin, Sliding Modes in Control and Optimization. Berlin, Germany: Springer- Verlag, 1992.
[69] C. Edwards and S. K. Spurgeon, Sliding-Mode Control- Theory and Applications. New York: Taylor & Francis, 1998.
[70] K. B. Park and J. J. Lee, “Variable structure controller for robotic manipulators using time-varying switching manifold,” Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 89-93, 1993.
[71] S. B. Choi, D. W. Park, and S. Jayasuriya, “A time-varying switching manifold for fast and robust tracking control of second-order uncertain systems,” Automatica, vol. 30, no. 5, pp. 899-904, 1994.
[72] A. Bartoszewicz, “A comment on a time-varying switching manifold for fast and robust tracking control of second-order uncertain systems,” Automatica, vol. 31, no. 12, pp. 1893-1895, 1995.
[73] E. C. Chang, T. J. Liang, J. F. Chen, and M. Y. Cheng, “A single-phase DC/AC inverter using moving sliding manifold sinusoidal tracking control,” Proceedings of the IEEE International Conference on Industrial Electronics, pp. 408-413, 2007.
[74] A. Bartoszewicz, “Time-varying sliding modes for second-order systems,” IEE Proceedings-Control Theory and Applications, vol. 143, no. 5, pp. 455-462, 1996.
[75] W. Gao, Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems,” IEEE Trans. on Industrial Electronics, vol. 42, no. 2, pp. 346-354, 1995.
[76] J. G. Zhang, Y. B. Zhang, Z. M. Chen, and Z. C. Zhao, “A control scheme based on discrete time-varying sliding surface for position control systems,” Proceedings of the 5th World Congress on Intelligent Control and Automation, pp. 1175-1178, 2004.
[77] X. H. Yu and M. Zhihong, “Model reference adaptive control systems with terminal sliding modes,” International Journal of Control, vol. 64, no. 6, pp. 1165-1176, 1996.
[78] R. B. Fernandez and J. K. Hedrick, “Control of multivariable nonlinear systems by the sliding mode method,” International Journal of Control, vol. 46, no.3, pp. 1019-1040, 1987.
[79] Y. Q. Wu, B. Wang, and G. D. Zong, “Finite-time tracking controller design for nonholonomic systems with extended chained form,” IEEE Trans. on Circuits and Systems-Part II: Express Briefs, vol. 52, no. 11, pp. 798-802, 2005.
[80] S. T. Venkataraman and S. Gulati, “Control of nonlinear systems using terminal sliding modes,” Proceedings of the International American Control Conference, pp. 891-893, 1992.
[81] X. H. Yu and J. X. Xu, Variable Structure Systems: Towards the 21st Century. New York: Springer-Verlag, 2002, Chap. 5.
[82] W. Perruquetti, and J. P. Barbot, Sliding Mode Control in Engineering. New York: Marcel Dekker, 2002, Chap. 4.
[83] M. Zak, “Terminal attractors in neural networks,” IEEE Trans. on Neural Networks, vol. 2, pp. 259-274, 1989.
[84] “dSPACE DSP controller reference set,” dSPACE GmbH., 2001.
[85] Z. Vukic, Nonlinear control systems. New York: Marcel Dekker, 2003.
[86] T. J. Liang and J. L. Shyu, “Improved DSP-controlled online UPS system with high real output power,” IEE Proceedings-Electric Power Applications, vol. 151, no. 1, pp. 121-127, 2004.
[87] T. J. Liang, Y. C. Kuo, and J. F. Chen, “Single-stage photovoltaic energy conversion system,” IEE Proceedings-Electric Power Applications, vol. 148, no. 4, pp. 339-344, 2004.
[88] J. F. Chen, Y. C. Kuo, and T. J. Liang, “Voltage and current hybrid controlled PWM inverters using variable structure control,” Proceedings of the IEEE International Conference on Power Electronics and Drive Systems, pp. 1010-1014, 1999.