| 研究生: |
劉泓伸 Liu, Hung-Shen |
|---|---|
| 論文名稱: |
兩級式具低輸入/輸出電流漣波高升壓五階層轉換器之研製 Study and Implementation of Two-stage High Step-up Five-level Converter with Low Input/Output Current Ripple |
| 指導教授: |
陳建富
Chen, Jiann-Fuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 多階層換流器 、被動式漣波消除電路 、KP直流轉換器 |
| 外文關鍵詞: | multilevel inverter, passive ripple cancelling circuit, KP DC Converter |
| 相關次數: | 點閱:81 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於有限的石化能源,世界各國正積極發展再生能源,其中以太陽光伏發電、風力發電為主。太陽能電池輸出電壓較低,因此需經由轉換器升壓後,再經由一級換流器將能量轉為交流電。傳統升壓式轉換器之輸入電流漣波較大,無法使太陽能電池保持最大功率輸出。為追求更佳的電力品質,需降低換流器之輸出諧波分量。解決上述問題,本文提出一直流/交流轉換器,此轉換器基於國立清華大學潘晴財教授為了紀念其父親 潘恭先生(Mr. Kung Pan)百年冥誕所提之,前級為具低輸入電流漣波高升壓比直流/直流轉換器,後級為五階層換流器結合被動式漣波消除濾波器。
本文實作出一輸入電壓為150Vdc,輸出電壓為220Vrms及額定功率為3 kW轉換器雛型。實測結果顯示,此轉換器相較於傳統升壓式轉換器,可減小98.1%輸入電流漣波,其漣波電流大小為200mA,而結合被動式漣波消除濾波器之五階層換流器能輸出較高的電力品質。
Due to the limited fossil countries in the world are developing renewable energy sources. Output voltage of solar cells is low. So it is required to boost the voltage and energy from DC to AC. If input current ripple of conventional boost converter is large, the maximum power tracking of the converter used in the PV system will be inaccurate. In order to obtain better performance, output voltage harmonics of inverter should be reduced. To solve the aforementioned problems, a low ripple DC/AC converter is proposed by National Tsing Hua University professor Ching-Tsai Pan in memory of his father Mr. Kung Pan (K.P.). First stage is a low input current ripple high step-up DC/DC converter, and second stage is five level inverter with passive ripple cancellation filter.
In this thesis, a converter prototype with input voltage 150Vdc, the output voltage 220Vrms and a rated power 3kW is implemented. The results show that the proposed converter reduce the input ripple current by 98.1%. Input current ripple’ amplitude can be reduced to 200mA. Five-level inverter with passive ripple cancellation filter can output high power quality.
[1] C. L. Chen, Y. Wang, and J. S. Lai, “Design of Parallel Inverters for Smooth Mode Transfer Microgrid Applications,” IEEE Power Electronics Conf. and Exposition, Washington, District of Columbia, USA, Feb. 15-19, 2009, pp. 1288-1294.
[2] A. Timbus, M. Liserre, R. Teodorescu, P. Rodriguez, and F. Blaabjerg, “Evaluation of Current Controllers for Distributed Power Generation Systems,” IEEE Trans. on Power Electronics, Vol. 24, No. 3, pp. 654-664, Mar. 2009.
[3] A. M. Salamah, S. J. Finney, and B. W. Williams, “Single-Phase Voltage Source Inverter With a Bidirectional Buck-Boost Stage for Harmonic Injection and Distributed Generation,” IEEE Trans. on Power Electronics, Vol. 24, No. 2, pp.379-387, Feb. 2009.
[4] T. Shimizu, K. Wada, and N. Nakamura, “Flyback-Type Single-Phase Utility Interactive Inverter With Power Pulsation Decoupling on the DC Input for an AC Photovoltaic Module System,” IEEE Trans. on Power Electronics, Vol. 21, No. 5, pp. 1264-1272, Sep. 2006.
[5] J. M. Kwon, and B. H. Kwon, “High-Step Up Active Clamp Converter With Input Current Doubler and Output-Voltage Doubler for Fuel Cell Power Systems,” IEEE Trans. on Power Electronics, Vol. 24, No. 5, pp. 108-115, Dec. 2008.
[6] M. A. S. Masoum, S. M. M. Badejani, and E. F. Fuchs, “Microprocessor controlled new class of optimal battery chargers for photovoltaic applications,” IEEE Trans. on Energy Conversion, Vol. 19, No. 3, pp. 599-606, Ste. 2004.
[7] A. F. Minai, A. Tariq, and Q. Alam, “Theoretical and Experimental Analysis of Photovoltaic Water Pumping System,” India International Conf. on Power Electronics, New Delhi, India, Jan. 28- 30, 2011, pp. 1 - 8.
[8] A. Tariq, and M. S. J. Asghar, “Development of an Analog Maximum Power Point Tracker for Photovoltaic Panel,” International Conf. on Power Electronics and Drives Systems, Kuala Lumpur, Malaysia, Nov. 28-Dec. 01, 2005, pp. 251-255.
[9] T. Andrejasic, M. Jankovec, and M. Topic, “Comparison of direct maximum power point tracking algorithms using EN 50530 dynamic procedure,” IET Renewable Power Generation, Vol. 5, pp. 281-286, Jul. 2011.
[10] G. J. Yu, Y. S. Jung, J. Y. Choi, I. Choy, J. H. Song, and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms” IEEE Twenty-Ninth Photovoltaic Specialists Conf., New Orleans, LA, USA, May. 19-24, 2002, pp. 251-255.
[11] H. Koizumi, T. Mizuno, T. Kaito, Y. Noda, N. Goshima, M. Kawasaki, K. Nagasaka, and K. Kurokawa, “A Novel Microcontroller for Grid-Connected Photovoltaic Systems,” IEEE Trans. on Industrial Electronics, Vol. 53, No. 6, pp. 1889-1897, Dec. 2006.
[12] G. Zhu, B. McDonald, and K. Wang, “Modeling and Analysis of Coupled Inductors in Power Converters,” IEEE Applied Power Electronics Conf. and Exposition, Washington, Feb. 15-19, 2009, pp. 83-89.
[13] D. S. Lymar, T. C. Neugebauer, and D. J. Perreault, “Coupled Magnetic Filters with Adaptive Inductance Cancellation,” IEEE Trans. on Power Electronics, Vol. 21, No. 6, pp. 1529-1540, Nov. 2006.
[14] M. J. Schutten, R. L. Steiqerwald, and J. A. Sabate, “Ripple Current Cancellation Circuit,” IEEE Applied Power Electronics Conf. and Exposition, Miami Beach, State of Florida, USA, Feb. 9-13, 2003, pp. 464-470.
[15] B. R. Lin, and C. L. Huang, “Interleaved ZVS Converter with Ripple-Current Cancellation,” IEEE Trans. on Industrial Electronics, Vol. 55, No. 4, pp. 1576-1585, Apr. 2008.
[16] S. Chandrasekaran, and L. U. Gokdere, “Integrated Magnetics for Interleaved DC-DC Boost Converter for Fuel Cell Powered Vehicles,” IEEE 35th Annual Power Electronics Specialists Conf., Aachen, Germany, Jun. 20-25, 2004, pp. 356-361.
[17] T. F. Wu, J. R. Tsai, Y. M. Chen, and Z. H. Tsai, “Integrated Circuits of a PFC Controller for Interleaved Critical Mode Boost Converters,” IEEE Applied Power Electronics Conf. and Exposition, Anaheim, State of California, USA, Feb. 25-Mar. 1, 2007, pp. 1347-1350.
[18] G. Yao, A. Chen, and X. He, “Soft Switching Circuit for Interleaved Boost Converters,” IEEE Trans. on Power Electronics, Vol. 22, No. 1, pp. 80-86, Jan. 2007.
[19] P. Thounthong, P. Sethakul, S. Rael, and B. Davat, “Modeling and Control of a Fuel Cell Current Control Loop of a 4-Phase Interleaved Step-Up Converter for DC Distributed System,” IEEE Power Electronics Specialists Conf., Rhodes, Jun. 15-19, 2008, pp. 230-236.
[20] C. S. Leu, P. Y. Huang, and W. K. Wang, “LLC Converter with Taiwan Tech Center Tapped Rectifier (LLC-TCT) for Solar Power Conversion Applications,” International Future Energy Electronics Conf., Tainan, Taiwan, Nov. 3-6, 2013, pp. 515-519.
[21] C. S. Leu, P. Y. Huang, and M. H. Li, “A Novel Dual Inductor Boost Converter With Ripple Cancellation for High Voltage Gain Applications,” IEEE Trans. on Industrial Electronics, Vol. 58, No. 4, pp. 1268-1273, Apr. 2010.
[22] C. S. Leu, P. Y. Huang, and W. K. Wang, “Asymmetrical Half-Bridge Converter with Input Current Ripple Reduction,” International Conf. on Intelligent Green Building and Smart Grid, Taipei, Taiwan, Apr. 23-25, 2014, pp. 1-5.
[23] C. S. Leu, C. S. Wu, T. Y. Chou, and S. L. Jung, “A Novel Dual-Switch Forward Converter with Input Current Ripple Reduction,” IEEE International Future Energy Electronics Conf., Taipei, Taiwan, Nov. 1-4, 2015, pp. 1-5.
[24] C. S. Leu, and Q. T. Nha, “A Half Bridge Converter With Input Current Ripple Reduction for DC Distribution Systems,” IEEE Trans. on Power Electronics, Vol. 28, No. 4, pp. 1756-1763, Apr. 2011.
[25] C. T. Pan, M. C. Cheng, and C. M. Lai, “Current Ripple-Free Module Integrated Converter (MIC) with More Precise Maximum Power Tracking Control for PV Energy harvesting,” IEEE International Conf. on Power Electronics and Drive Systems, Kitakyushu, Japan, Apr. 22-25, 2013, pp. 1328-1334.
[26] D. C. Hamill, and P. T. Krein, “A Zero Ripple Technique Applicable To Any DC Converter,” IEEE Power Electronics Specialists Conf., Charleston, State of South Carolina, USA, Jun. 27-Jul. 01, 1999, pp. 1165-1171.
[27] M. J. Schutten, R. L. Steigerwald, and J. A. Sabate, “Ripple Current Cancellation Circuit,” IEEE Applied Power Electronics Conf. and Exposition, Miami Beach, State of Florida, USA, Feb. 9-13, 2003, pp. 464-470.
[28] M. C. Cheng, and C. T. Pan, “An Input Current Ripple-Free Flyback-Type Converter with Passive Pulsating Ripple Cancelling Circuit,” IEEE Energy Conversion Congress and Exposition, Montreal, Quebec, Canada, Sep. 20-24, 2015, pp. 6336-6343.
[29] C. M. Lai, and Y. H. Liao, “Design Analysis and Experimental Verification of a Modularized Output Current Ripple-Free Microgrid Inverter,” IEEE International Symposium on Next-Generation Electronics, Kaohsiung, Taiwan, Feb. 25-26, 2013, pp. 455 -458.
[30] C. T. Pan, C. M. Lai, and Y. L. Juan, “Output Current Ripple-Free PWM Inverters,” IEEE Trans. on Circuits and Systems II: Express Briefs, Vol. 57, No. 10, pp. 823-827, Aug. 30, 2010.
[31] H. G. Choi, and J. I. Ha, “Design Technique of Coupled Inductor Filter for Suppressing Switching Ripples in PWM Converters,” International Conf. on Power Electronics Systems and Applications, Hong Kong, China, Dec. 15-17, 2015, pp. 1-4.
[32] S. S. Nag, S. Mishra, and A. Joshi, “A Passive Filter Building Block for Input or Output Current Ripple Cancellation in a Power Converter,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 4, No. 2, pp. 564-575, Oct. 2015.
[33] D. S. Lymar, T. C. Neugebauer, and D. J. Perreault “Coupled-Magnetic Filters With Adaptive Inductance Cancellation,” IEEE Trans. on Power Electronics, Vol. 21, No. 6, pp. 1529-1540, Nov. 2006.
[34] R. S. Balog, and P. T. Krein, “Coupled-Inductor Filter: A Basic Filter Building Block,” IEEE Trans. on Power Electronics, Vol. 28, No. 1, pp. 537-546, Feb. 2012.
[35] T. C. Neugebauer, and D. J. Perreault, “Filters With Inductance Cancellation Using Printed Circuit Board Transformers,” IEEE Transactions on Power Electronics, Vol. 19, No. 1, pp. 591-602, May 2004.
[36] T. C. Neugebauer, J. W. Phinney, and D. J. Perreault, “Filters and Components with Inductance cancellation,” IAS Annual Meeting. Conf. Record of the Industry Applications Conf., Pittsburgh, Commonwealth of Pennsylvania, USA, Oct. 13-18, 2002, pp. 939-947.
[37] S. K. Mazumder, R. K. Burra, and K. Acharya, “A Ripple-Mitigating and Energy-Efficient Fuel Cell Power-Conditioning System,” IEEE Trans. on Power Electronics, Vol. 22, No. 4, pp. 1437-1452, Jul. 2007.
[38] A. C. Chow, and D. J. Perreault, “Design and Evaluation of an Active Ripple Filter Using Voltage Injection,” IEEE Power Electronics Specialists Conf., Vancouver, British Columbia, Canada, Jun. 17-21, 2001, pp. 390-397.
[39] D. C. Hamill, “An Efficient Active Ripple Filter for Use in DC-DC Conversion,” IEEE Trans. on Aerospace and Electronic Systems, Vol. 32, No. 3, pp. 1077-1084, Jul. 1996.
[40] M. Ali, E. Laboure, and F. Costa, “Integrated hybrid EMI filter: Study and realization of the active part,” European Conf. on Power Electronics and Applications, Lille, French, Sep. 2-6, 2013, pp. 1-8.
[41] P. C. Murphy, T. C. Neugebauer, C. Brasca, and D. J. Perreault “An Active Ripple Filtering Technique for Improving Common-Mode Inductor Performance,” IEEE Power Electronics Letters, Vol. 2, No. 2, pp. 45-50, Jun. 2004.
[42] M. Zhu, D. J. Perreault, V. Caliskan, T. C. Neugebauer, S. Guttowski, and J. G. Kassakian, “Design and Evaluation of Feedforward Active Ripple Filters,” IEEE Trans. on Power Electronics, Vol. 20, No. 2, pp. 276-285, Mar. 2005.
[43] S. Ostroznik, P. Bajec, and P. Zajec, “A Study of a Hybrid Filter,” IEEE Trans. on Industrial Electronics, Vol. 57, No. 3, pp.935-942, Mar. 2010.
[44] B. R. Lin, and C. L. Huang, “Interleaved ZVS Converter with Ripple-Current Cancellation,” IEEE Trans. on Industrial Electronics, Vol. 55, No. 4, pp. 1576-1585, Apr. 2008.
[45] S. Chandrasekaran, and L. U. Gokdere, “Integrated Magnetics for Interleaved DC-DC Boost Converter for Fuel Cell Powered Vehicles,” IEEE Power Electronics Specialists Conf., Aachen, Germany, Jun. 20-25, 2004, pp. 356-361.
[46] T. F. Wu, J. R. Tsai, Y. M. Chen, and Z. H. Tsai, “Integrated Circuits of a PFC Controller for Interleaved Critical-Mode Boost Converters,” IEEE Applied Power Electronics Conf., Anaheim, State of California, USA, Feb. 25-Mar. 1, 2007, pp. 1347-1350.
[47] G. Yao, A. Chen, and X. He, “Soft Switching Circuit for Interleaved Boost Converters,” IEEE Transactions on Power Electronics, Anaheim, State of California, USA, Feb. 25-Mar. 1, 2007, pp. 1347-1350.
[48] P. Thounthong, P. Sethakul, and B. Davat, “Modeling and Control of a Fuel Cell Current Control Loop of a 4-Phase Interleaved Step-Up Converter for DC Distributed System,” IEEE Power Electronics Specialists Conference, Rhodes, Jun. 15-19, 2008, pp. 230-236.
[49] P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 4, pp. 787-795, Aug. 2000.
[50] P. Thounthong, P. Sethakul, S. Rael, and B. Davat, “Design and Implementation of 2-Phase Interleaved Boost Converter for Fuel Cell Power Source,” IET Conf. on Power Electronics, York, England, Apr. 2-4, 2008, pp. 91-95.
[51] C. R. Sullivan, J. J. Awerbuch, and A. M. Latham, “Decrease in photovoltaic power output from ripple: simple general calculation and the effect of partial shading,” IEEE Transactions on Industrial Electronics, Vol. 28, No. 2, pp. 740-747, Feb. 2013.
[52] N. D. Benavides and P. L. Chapman, “Modeling the effect of voltage ripple on the power output of photovoltaic modules,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 7, pp. 2638-2643, Jul. 2008.
[53] H. S. Khaldi, and A. C. Ammari, “Fractional-order control of three level boost DC/DC converter used in hybrid energy storage system for electric vehicles,” International Renewable Energy Congress, Sousse, Tunis, Mar. 24-26, 2015, pp.1-7.
[54] J. Lam, and P. K. Jain, “A New Single-stage Three-Phase AC/DC Medium Voltage Step-up Transformer-less Converter with ZVS for Wind Energy Systems,” European Conf. on Power Electronics and Applications, Lappeenranta, Suomi, Aug. 26-28, 2014, pp. 1-8.
[55] A. Shahin, J. P. Martin, B. N. Mobarakeh, and S. Pierfederici, “Optimal Efficiency Operation of Non-Isolated DC/DC Converter for High Voltage Ratio Applications,” IEEE Conf. Industrial Electronics Societ, Vienna, Austria, Nov.10-13, 2013, pp.1106-1111.
[56] R. Krishna, D. E. Soman, S. K. Kottayil, and M. Leijon, “Pulse delay control for capacitor voltage balancing in a three-level boost neutral point clamped inverter,” IET Power Electronics, Vol. 8, pp268-277, Feb. 2015.
[57] S. Dusmez, A. Hasanzadeh, and A. Khaligh, “Comparative Analysis of Bidirectional Three Level DC/DC Converter for Automotive Applications,” IEEE Transactions on Industrial Electronics, Vol. 62, No.5, pp. 3305-3315, Aug. 2014.
[58] 蔡佳原,“單相新型多階層換流器研製”,國立成功大學電機工程研究所,碩士論文,中華民國101年6月。
[59] M. Marchesoni, and P. Tensa, “Diode-clamped multilevel converters: a practicable way to balance dc-link voltages,” IEEE Trans. Industrial Electronics, Vol. 49, No. 4, pp. 752-765, Aug. 2002.
[60] X. Yuan, and I. Barbi, “Fundamentals of a new diode clamping multilevel inverter,” IEEE Trans. Industrial Electronics, Vol. 15, No. 4, pp.711-718, July 2000.
[61] S. J. Park, F. S. Kang, M. H. Lee, and C.U. Kim, “A new single-phase five-level pwm inverter employing a deadbeat control scheme,” IEEE Trans. Power Electronics, Vol. 18, No. 3, pp.831-843, May 2003.
[62] C. T. Pan, S. K. Liang, and C. M. Lai, “A Zero Input Current Ripple Boost Converter for Fuel Cell Applications by Using a Mirror Ripple Circuit,” IEEE International Power Electronics and Motion Control Conf., Wuhan, China, May 17-20, 2009, pp.787-793.
[63] Yokogawa Electric Corporation, “WT3000 precision power analyzer user’s manual,” IM 760303-01E 5th Edition, pp. 2-6.