| 研究生: |
陳宇範 Chen, Yu-Fan |
|---|---|
| 論文名稱: |
具三相功因修正與最大功率追蹤之市電併聯型風力發電電能轉換系統 Design and Implementation of Grid-Connected Wind Power Conversion System with Three-Phase PFC and MPPT Functions |
| 指導教授: |
楊宏澤
Yang, Hong-Tzer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 功因修正市電併聯 、風力發電 |
| 外文關鍵詞: | PFC, Grid Connection, Wind Power Generation |
| 相關次數: | 點閱:93 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統風力發電系統多未針對風力發電機輸出端執行功率因數修正,導致風力發電機輸出端功率因數較低之缺點。為改善此一缺點,本文提出具三相功因修正風力發電轉換系統,藉由提高風力發電機輸出端功率因數,達到提高風力發電效率及減少風力發電機機械應力之目的。
系統包含三相功因修正電路、雙向充放電電路及全橋變流器。系統前級架構為昇壓型三相功因修正轉換器,轉換器輸入側對風力發電機輸出三相電源執行功因修正,同時將風力發電機輸出電壓昇壓以供後級全橋變流器進行市電併聯。雙向充放電電路於本文作為備用電源,風力發電機電能足夠且電池沒電時,對電池以兩階段式充電法進行充電;當市電端異常,系統與市電端切離,風力發電機電能不足時,雙向充放電電路以放電模式持續供電至交流負載端,提高系統供電穩定度。系統後級全橋變流器,將前端三相功因修正轉換器所擷取之風力發電電能轉為交流饋入單相市電,同時以擾動觀察法作為系統最大功率追蹤轉換器。
硬體實作本文以1.2kW風力發電模擬系統作為輸入源,於不同風力發電機輸出電壓頻率下三相功率因數值可由原來0.71修正至0.94~0.96;全橋變流器與單相110Vrms,60Hz市電併聯,市電端功率因數0.991,電流諧波因數8.64%,系統整體最高效率85.5%。實作結果驗證本文提出之三相功因修正轉換器確可有效提高風力發電機輸出端功率因數值,所建構之全橋變流器與雙向充放電轉換器亦可正常操作於風力發電機最大功率輸出點附近。
Most of the traditional small wind generation conversion systems do not possess the function of power factor correction (PFC) on the generator output side. As a result, the power factor at the generator output is much lower. To ameliorate the problem, this thesis proposes a three-phase wind power conversion system with the function of PFC. The power factor of the wind generator output can thus be improved to increase the efficiency the wind generator and reduce the mechanical stress on the wind generator.
The system consists of three-phase PFC converters, a bi-directional charge/discharge converter, and a full-bridge inverter. The front stage includes three Boost converters for each of three phases, respectively, to raise the generator output voltage from a full-bridge diode rectifier and conduct the PFC od each phase, simultaneously. The boosted DC voltage is then used for the input of the full-bridge inverter for grid connection. Bi-directional charge/discharge converter works as a standby power source. When the power of the wind generator is sufficient and the energy of battery is low, the battery will be charged via a two-step charge scheme. As the system is disconnected from the grid and the wind generator power is low, the bi-directional converter will discharge to supply AC power to the load to improve the reliability of power supply. The full-bridge inverter transfers the DC voltage of the three-phase Boost converters into the single-phase AC grid. In the meantime, the perturbation and observation method is used for the maximal power tracking (MPPT).
To verify the approach proposed in this thesis, a motor-driven 1.2kW wind generation simulation system is adopted. The simulated and experimental results show that under different wind speeds, the power factors of the three phases of the generator can be corrected into 0.94-0.96 from the original 0.71 without PFC. As the full-bridge inverter is connected to the 110Vrms, 60Hz grid, achieved are the power factor of 0.991, current total harmonic distortion (THD) of 8.64% and the highest overall system efficiency of 85.5% for the wind-generation system. The proposed three-phase PFC converters have been verified through the experimental results that the power factors of the wind generator can be effectively and the full-bridge inverter and bi-directional charge/discharge converter can also be operated close to the maximum power point of the wind generator.
[1] E. Koutroulis and K. Kalaitzakis, “Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications, ” IEEE Transactions on Industrial Electronics, Vol. 53, NO. 2, APRIL 2006.
[2] Y. M. Chen, Y. C. Liu, S. C. Hung, and C. S. Cheng, “Multi-Input Inverter for Grid-Connected Hybrid PV/Wind Power System, ” IEEE Transactions on Power Electronics, Vol. 22, NO. 3, MAY 2007.
[3] F. S. D. Reis, K. Tan, and S. Islam, “Using PFC and Trap Filters For Harmonic Mitigation in Wind Turbine Energy Conversion Systems, ” Australasian Universities Power Engineering Conference, 2004.
[4] S. J. Chiang, K. T. Chang, and C .Y . Yen, “Residential Photovoltaic Energy Storage System, ” IEEE Transactions on Industrial Electronics, Vol. 45, NO. 3, JUNE 1998.
[5] S. Sopitpan, P. Changmoang, and S. Panyakeow, “PV Systems With/without Grid Back-up for Housing Applications, ” Proceedings of the IEEE Photovoltaics Specialists Conference, 2000.
[6] N. Patcharaprakiti and S. Premrudeepreechacharn, “Maximum Power Point Tracking Using Adaptive Fuzzy Logic Control for Grid-connected Photovoltaic System, ” Proceedings of the IEEE Power Engineering Society Winter Meeting, 2002.
[7] 莊志祥,具小型風力發電市電併聯功能之在線式不斷電系統,中原大學碩士論文,民國97年。
[8] G. Spiazzi and F. C. Lee, “Implementation of Single-Phase Boost Power-Factor-Correction Circuits in Three-Phase Application,” IEEE Trans. on Industrial Electronics, Vol. 44, NO. 3, JUNE 1997.
[9] A. R. Prasad, P. D. Ziogas, and S. Maniad, “An Active Power Factor Correction Technique for Three-Phase Diode Rectifiers, ” IEEE Trans. on Power Electronics, Vol. 6, NO. 1, JANUARY 1991.
[10] L. Malesani, L. Rossetto, P. Tenti, and P. Tomasin, “AC/DC/AC PWM Converter with Reduced Energy Storage in the DC Link, ” IEEE Trans. on Industry Applications, Vol. 31, NO. 2, APRIL 1995.
[11] J. Walker and N. Jenkins, Wind Energy Technology, John Wiley, 1997.
[12] 王建斌,風力系統最大功率追蹤方法之研究,中原大學碩士論文,民國94年。
[13] P. Gipe, Wind Energy Comes of Age, John Wiley and Sons, 1995.
[14] 黃國華、陳鴻城、葉官悌與謝宗煌,電機機械,高立圖書有限公司,民國97年。
[15] 王順忠,電力電子學,東華書局,2001。
[16] M. Matsuo, K. Matsui, I. Yamamoto, and F. Ueda, “A Comparison of various DCDC Converters and Their Application to Power Factor Correction, ” IEEE Industrial Electronics Society, 2000.
[17] E. Koutroulis, K. Kalaitzakis and N. C. Voulgaris, “Development of A Microcontroller-Based Photovoltaic Maximum Power Point Tracking Control System, ” IEEE Trans. on Power Electronics, Vol. 16, NO. 1, JANUARY 2001.
[18] D. Sera and T. Kerekes, “Improved MPPT Algorithms for Rapidly Changing Environmental Conditions, ” EPE-PEMC, 2006.
[19] E. Koutroulis and K. Kalaitzakis, “Design of A Maximum Power Tracking System for Wind-Energy-Conversion Applications, ” IEEE Trans. on Industrial Electronics, Vol. 53, NO. 2, APRIL 2006.
[20] H. Li, K. L. Shi, and P. G. McLaren, “Neuarl-Network-Based Sensorrless Maximum Wind Energy Capture with Compensated Power Coefficient, ” IEEE Trans. on Industry Applications, Vol. 41, NO. 6, NOVEMBER 2005.
[21] 宋自恆、林慶仁,功率因數修正電路原理與常用元件規格,新電子科技雜誌第217 期,2004。
[22] L. Huber, T. Irving, and M. M. Jovanovi´c, “Review and Stability Analysis of PLL-Based Interleaving Control of DCM/CCM Boundary Boost PFC Converters"IEEE Trans. on Power Electronics, Vol. 24, NO. 8, AUGUST 2009.
[23] N. J. Park and D. S. Hyun, “ IBC Using A Single Resonant Inductor for High-Power Applications"IEEE Trans. On Industrial Electronics, Vol. 56, NO. 5, MAY 2009.
[24] 朱延松,具能量回送與功因修正之正負脈衝電池充電器,成功大學碩士論文,民國91年。
[25] 吳財福、張健軒與陳裕愷,太陽能供電與照明系統綜論,全華出版社,民國89年。
[26] 江炫樟,電力電子學第三版,全華出版社,民國92年。
[27] 董勝源,DSP TMS320LF2407與C語言控制實習,長高科技圖書,民國93年。
[28] 鄭培展,以FPGA為基礎之市電併聯型1.2kW風力發電電城轉換系統研製,成功大學碩士論文,民國99年