| 研究生: |
李育丞 Li, Yu-Cheng |
|---|---|
| 論文名稱: |
基於快速傅立葉轉換應用於連續近似式類比數位轉換器之數位電路校正技術 A Fast-Fourier-Transform-Based Digital Calibration Technique for Successive-Approximation-Register Analog-to-Digital Converters |
| 指導教授: |
李順裕
Lee, Shuenn-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 連續近似式類比數位轉換器 、數位校正 、傅立葉轉換 |
| 外文關鍵詞: | Analog-to-digital converter (ADC), Fourier transform (FT), digital calibration, harmonic distortion |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種採用快速傅立葉處理器應用於逐漸趨近式類比數位轉換器之數位校正方法。此校正演算法可用來克服來自製程偏移所造成之電容不匹配,電容不匹配會造成類比數位轉換器所轉換之數位碼發生錯誤,而本論文所提出之校正方法為利用演算法分析三次諧波的量值進而求得電容實際之權重,並將原先輸出之發生錯誤之數位碼重新編碼後輸出。快速傅立葉轉換器被廣泛使用於生醫、影像處理、通訊等系統,因此利用本論文提出之校正方法對於上述系統並不會造成額外的硬體負擔。由十二位元之逐漸趨近式類比數位轉換器行為模型之模擬結果可得知,在1%之電容不匹配下,其校正後之ENOB可提高約2位元,校正後之SNDR可提高約14.52分貝。
本論文所提出之類比數位轉換器使用標準TSMC 0.18μm 1P6M製程,由量測結果可得知,在操作電壓為3.3伏特,每秒四十萬次的取樣下。在二千赫茲的輸入訊號下,經過演算法校正後所得到的訊號雜訊失真比、無雜訊影響動態範圍和有效位元數分別為66.46分貝、80.75分貝和10.75位元。電路的功率消耗為1.84毫瓦
This thesis presents a Fast-Fourier-Transform-Based calibration technique for successive-approximation-registers analog-to-digital converters (SAR ADCs). The proposed calibration technique can correct the error introduced by the capacitor mismatch, which results in the wrong output digital codes. The proposed algorithm can be adopted to evaluate the real radix of the capacitor array and generate new output digital codes to compensate the error. Since Fourier Transform analysis is widely used in biomedical, communication and image processing systems, it can be reused for calibrating SAR ADCs without increasing hardware complexity. According to the simulation result of a 12-bit SAR ADC behavior model with 1 % capacitor mismatch, the effective number of bit (ENOB) and the signal-to-noise ratio (SNDR) can be enhanced about 2 bits and 14.52 dB respectively.
The proposed SAR ADC is fabricated in TSMC 0.18μm 1P6M technology. The measurement result reveals that the SNDR, spurious free dynamic range (SFDR) and ENOB is 66.46 dB, 80.75 dB and 10.75-bit respectively after calibration, where the power supply is 3.3-V and the frequency of input signal is 2-kHz with the 400-kS/s sampling rate. The total power dissipation of the proposed ADC is 1.84 mW.
[1] Behzad Razavi, “Principles of Data Conversion System Design,” IEEE Press, 1995.
[2] David A. Johns, Ken Martin, “Analog integrated circuit design,” John Wiley & Sons, Inc., 1997.
[3] Z. Cao, S. Yan, Y. Li, “A 32 mW 1.25 GS/s 6b 2b/Step SAR ADC in 0.13 um CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 862–873, 2009.
[4] Y. Zhu, C. H. Chan, S. W. Sin, S. P. U ; R.P. Martins, F. Maloberti, “A 50-fJ 10-b 160-MS/s Pipelined-SAR ADC Decoupled Flip-Around MDAC and Self-Embedded Offset Cancellation,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2614–2626, 2012.
[5] L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi, M. Brandli, M. Kossel, T. Morf, T. M. Andersen, Y. Leblebici, “A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3049–3058, 2013.
[6] Y. H. Juan, H. Y. Huang, S. C. Lai, W. H. Juang, S. Y. Lee, C. H. Luo,”A Distortion Cancellation Technique with the Recursive DFT Method for Successive Approximation Analog-to-Digital Converters,” IEEE Trans. on Circuits and Systems IIs, Exp. Briefs, vol. 63, no. 2, pp. 146-150, Feb., 2015.
[7] S. Y. Lee, M. C. Liang, and C. H. Hsieh, “FFT-based calibration method for 1.5 bit/stage pipelined ADCs,” Int. J. Circuit Theory Appl., vol. 43, no 4, pp. 455-469, Oct. 2013.
[8] H.-S. Lee, D. A. Hodges and P. R. Gray,“A self-calibrating 15 bit CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. sc-19, no 6, pp. 813-819, Dec. 1984.
[9] W. B. Liu, P. L. Huang, and Y. Chiu, “A 12-bit, 45-MS/s, 3-mW Redundant Successive-Approximation-Register Analog-to-Digital Converter With Digital Calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2661–2672, 2011.
[10] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, ” A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 731–740, Apr. 2010.
[11] B. P. Ginsburg and A. P. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC," IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747, April 2007.
[12] W. Y. Pang, C. S. Wang, Y. K. Chang, N. K. Chou and C. K. Wang, "A 10-bit 500-KS/s low power SAR ADC with splitting comparator for bio-medical applications,"IEEE Asian Solid-State Circuits Conference, Taipei, 2009, pp. 149-152.
[13] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010.
[14] F. Kuttner,“A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13μm CMOS,” IEEE ISSCC Dig. Tech. Papers, Feb. 2002, pp. 176-177.
[15] M. Yoshioka, K. Ishikawa, T. Takayama and S. Tsukamoto, "A 10-b 50-MS/s 820- $mu $W SAR ADC With On-Chip Digital Calibration," IEEE Transactions on Biomedical Circuits and Systems, vol. 4, no. 6, pp. 410-416, Dec. 2010.
[16] H. Ha, S. K. Lee, B. Kim, H. J. Park and J. Y. Sim, “A 0.5-V, 1.47-μW 40-kS/s 13-bit SAR ADC with capacitor error compensation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no 11, pp. 840-844, Nov. 2014.
[17] R. Xu, B. Liu, and J. Yuan,“Digitally calibrated 768-kS/s 10-b minimum-size SAR ADC array with dithering,” IEEE J. Solid-State Circuits, vol. 47, no 9, pp. 1-12, Sep. 2012.
[18] G. Wang, F. Kacani, and Y. Chiu,“IRD digital background calibration of SAR ADC with coarse reference ADC acceleration,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no 1, pp. 11-15, Jan. 2014.
[19] J. McNeill, K. Y. Chan, M. C. W. Coln, C. L. David, and C. Brenneman,“All-digital background calibration of a successive approximation ADC using the“split” ADC architecture,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no 10, pp. 2355-2365, Oct. 2011.
[20] J. Y. Um, Y. J. Kim, E. W. Song, J. Y. Sim, and H. J. Park,“A digital calibration of split-capacitor DAC for a differential SAR ADC without additional analog circuits,” IEEE Trans. Circuits Syst. I, Reg. papers, vol. 60, no 11, pp. 2845-2856, Nov. 2013.
[21] H. Nakane, R. Ujiie, T. Oshima, T. Yamamoto, K. Kimura, Y. Okuda, K. Tsuiji, and T. Matsuura,“A fully integrated SAR ADC using digital correction technique for triple-mode mobile transceiver,” IEEE J. Solid-State Circuits, vol. 49, no 11, p=p. 2503-2515, Nov. 2014.
[22] Y. Zhu, C. H. Chan, S. S. Wong, U. S. Pan and R. P. Martins,“Histogram-based ratio mismatch calibration for bridge-DAC in 12-bit 120 MS/s SAR ADC,” IEEE Trans. Very Large Scale Integer. (VLSI) Syst., vol. 24, no 3, pp. 1203-1207, Mar. 2016.
[23] Y. K. Cho, Y. D. Jeon, J. W. Nam, J. K. Kwon, “A 9-bit 80 MS/s Successive Approximation Register Analog-to-Digital Converter With a Capacitor Reduction Technique,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 7, pp. 502–506, 2010
[24] Y. Zhu, C. H. Chan, U. Seng-Pan and R. P. Martins, "A 10.4-ENOB 120MS/s SAR ADC with DAC linearity calibration in 90nm CMOS," IEEE Asian Solid-State Circuits Conference (A-SSCC), Singapore, 2013, pp. 69-72.
[25] N. Collins, A. Tamez, L. Jie, J. Pernillo and M. P. Flynn, "A Mismatch-Immune 12-bit SAR ADC With Completely Reconfigurable Capacitor DAC," IEEE Transactions on Circuits and Systems II: Express Briefs.
[26] J. Liu, Y. Zhu, C. H. Chan, S. W. Sin, S. P. U and R. P. da Silva Martins, "Uniform Quantization Theory-Based Linearity Calibration for Split Capacitive DAC in an SAR ADC," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 7, pp. 2603-2607, July 2016.
[27] Yangjin Oh and B. Murmann, "System embedded ADC calibration for OFDM receivers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 53, no. 8, pp. 1693-1703, Aug. 2006.
[28] Goertzel, Gerald. “An Algorithm for the Evaluation of Finite Trigonometric Series.”The American Mathematical Monthly, vol. 65, no. 1, 1958, pp. 34–35.
[29] N. Verma and A. P. Chandrakasan, "An Ultra Low Energy 12-bit Rate-Resolution Scalable SAR ADC for Wireless Sensor Nodes," IEEE Journal of Solid-State Circuits, vol. 42, no. 6, pp. 1196-1205, June 2007.
[30] S. Fateh, P. Schönle, L. Bettini, G. Rovere, L. Benini and Q. Huang, "A Reconfigurable 5-to-14 bit SAR ADC for Battery-Powered Medical Instrumentation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 11, pp. 2685-2694, Nov. 2015.
[31] Y. Shen, Z. Zhu, S. Liu and Y. Yang, "A Reconfigurable 10-to-12-b 80-to-20-MS/s Bandwidth Scalable SAR ADC," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 1, pp. 51-60, Jan. 2018.
[32] H. M. Lin and K. A. Wen, "A low power reconfigurable SAR ADC for CMOS MEMS sensor,"2017 International SoC Design Conference (ISOCC), Seoul, 2017, pp. 7-8.
[33] D. Aksin, M. Al-Shyoukh and F. Maloberti, "Switch Bootstrapping for Precise Sampling Beyond Supply Voltage," IEEE Journal of Solid-State Circuits, vol. 41, no. 8, pp. 1938-1943, Aug. 2006.
[34] A. H. Chang, H. S. Lee and D. Boning, "A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration,"2013 Proceedings of the ESSCIRC (ESSCIRC), Bucharest, 2013, pp. 109-112.
校內:2023-09-01公開