簡易檢索 / 詳目顯示

研究生: 魏貴杰
Wahyu Widiyanto
論文名稱: 印尼巽他海峽及周邊地區機率式海嘯危害度分析
A PROBABILISTIC TSUNAMI HAZARD ASSESSMENT FOR SUNDA STRAIT AND THE SURROUNDING AREA
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 177
外文關鍵詞: tsunami, probability, hazard, earthquake, uncertainty, mitigation, Sunda Strait
相關次數: 點閱:37下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The Probabilistic Tsunami Hazard Assessment (PTHA) is in the early stages of development, with numerous efforts underway to apply it to diverse places on a local, national, regional, and worldwide scale. The Sunda Strait and its environs are the subjects of this study, which is conducted on a local basis. The Sunda Strait connects the islands of Java and Sumatra and is vital to both the Indonesian and international communities. The tsunami has struck the region and its environs multiple times in its history, and it is certain to strike again in the future. Therefore, a tsunami hazard analysis for this area is crucial for mitigation and development purposes. Before getting into the core of the dissertation, two tsunamis that struck Indonesia in 2018, the Sulawesi Tsunami and the Sunda Strait Tsunami, served as inspiration for both study and the author personally. Field surveys were carried out at two incident locations and the results of the field surveys were packaged in a chapter at the beginning.
    The purpose of this research is to apply a probabilistic technique to assess and analyze tsunami hazards in the Sunda Strait and surrounding area to create and provide hazard curves and maps for the region. Developing probabilistic tsunami hazard assessment methods has been the focus of many studies. As a result, rather than suggesting a unique strategy, this study emphasizes the usage of PTHA in areas where it is urgently needed. In this study, the method for constructing PTHA considers uncertain input to modeling tsunami propagation. Only earthquake is considered as tsunami generator and the uncertainty is mainly related to slip and location. These are the steps that make up the overall process of this research. First, define the location of the tsunamigenic or seismic source. The second step is to create a synthetic earthquake catalog. Third, the propagation of uncertainty from model input to tsunami response at the evaluated locations. Fourth, generating hazard curves and maps. The hazard curves and maps are then utilized to evaluate the specific circumstances. The concept of Karhunen-Loeve (K-L) expansion is the basis for generating random slip samples. While a Stochastic Reduced Order Model (SROM) tool is used to propagate uncertainty from the earthquake to the tsunami response. It uses the Cornell Multi-grid Coupled Tsunami (COMCOT) model for tsunami simulations, which is based on the shallow water equation.
    The simulations include the provinces of Lampung, Banten, and West Java, as well as Jakarta, the capital of the Republic of Indonesia. This simulation domain needs a size of 1100 km x 720 km and consists of 7 layers configuring a nested grid with the smallest grid size of 6 arcsec (180 km) according to bathymetry data resolution of the BATNAS (Batimetri Nasional), issued by Indonesian Geospatial Information Agency. A combination of linear and nonlinear equations to the layers is applied to the mid-ocean and nearshore areas, respectively. A total of 880 locations are analyzed for tsunami hazard, with an interval of 2 km for coastlines on the Indian Ocean side and 4 km for coastlines on the Java Sea side. The total length of the coastlines that have been assessed is 2200 kilometers. Three segments of megathrust in the subduction zone's outer ring of fire are considered tsunamigenic. Segments of Enggano, Sunda Strait, and West-Central Java are all part of them. As a tsunami generator, the earthquake magnitude target is Mw 7.5-9.0. There are 1700 simulations necessary when slip and location/epicenter are used as uncertainty variables. The two parameters are chosen because of the most uncertainty. An exceedance curve is formed when the tsunami amplitude is paired with the likelihood of occurrence. Meanwhile, a hazard curve will be formed by combining the exceedance curve with the earthquake recurrence. It necessitates average return periods of earthquakes. The Guttenberg-Richter Law is applied here by using 60-year seismic data from 1960 to 2020. The PTHA also provides some hazard maps. With such a large area and a long coastline, the computation's outcome could be useful for community-based mitigation. In terms of this mitigation strategy, intensive simulations conducted have produced tsunami wave records and arrival times for 565 villages in the study area.
    Furthermore, the PTHA is used to evaluate two intangible assets, such as national parks and architectural heritage, in order to broaden the impact of this study and obtain a broader impact on life. Ujung Kulon National Park was chosen to study tsunami damage in the endeavor to rescue Javan Rhinos, an endangered species. In addition, the PTHA has been adopted for the preservation of Fort Pendem Cilacap as a tsunami-prone heritage building. Based on field surveys, PTHA work, and intangible asset evaluation, this study proposes an innovative concept to disaster risk reduction. The approach is introduced as object-oriented disaster risk reduction (OO-DRR). It might elaborate on or complete the existing method. Finally, some further work is advised, particularly expanding the study area, as this study only covers around 5% of Indonesia.

    Contents Approval ii Abstract iii Biography Sketch v Dedication vi Acknowledgment vii Contents ix List of Figures xii List of Tables xviii Abbreviation xix CHAPTER 1 – INTRODUCTION 1 1.1 Probabilistic Tsunami Hazard Assessment 1 1.2 Historical Tsunami and Tectonic Setting around Sunda Strait 4 1.3 Important Role of Sunda Strait for Indonesian and International Community Life 6 1.4 Research Goals 8 1.5 Overview of the Study 9 CHAPTER 2 – TWO INDONESIAN TSUNAMIS IN 2018: FIELD SURVEYS AND LESSONS 11 2.1 Sulawesi Tsunami 28 September 2018 11 2.1.1 Survey Details 14 2.1.2 Inundation and Run-up Measurements Results 19 2.1.3 Tsunami Arrival Time 23 2.1.4 Building and Infrastructure Damage 24 2.1.5 Coastal Landslides 29 2.1.6 Conclusions 31 2.2 Sunda Strait Tsunami 22 December 2018 32 2.2.1 Introduction 33 2.2.2 Study Area 35 2.2.3 Method 36 2.2.4 Run-up 39 2.2.5 Inundation 40 2.2.6 Tsunami Wave Direction 41 2.2.7 Sediment Characteristics 43 2.2.8 Conclusion 50 2.3 Lesson and Motivation from the Two Indonesian Tsunamis 2018 51 CHAPTER 3 – THEORITICAL FRAMEWORK 54 3.1 Earthquake Tsunami Generation 54 3.2 Tsunami Wave Propagation 57 3.3 Uncertainty 59 3.4 Random Sample Generation 63 3.5 Propagation of Uncertainty 67 3.6 Numerical Model 69 3.7 Probability Analysis 71 CHAPTER 4 – METHODOLOGY 74 4.1 PTHA Technique 74 4.2 Study Area, Assessed Location and Hazard Points 77 4.3 Data Necessety and Availability 80 4.4 Numerical Verification of COMCOT 80 4.5 Simulation Set-up 82 4.6 Simulation Setting to Support Community-based Tsunami Preparedness 84 CHAPTER 5 – RESULTS AND DISCUSSION 87 5.1 Synthetic Earthquake Catalog 87 5.2 Tsunami Propagation and Water Surface Elevation 94 5.3 Exceedance Curve 96 5.4 Tsunami Hazard Curves 100 5.5 Tsunami Hazard Maps 102 5.6 PTHA to support Community-based Tsunami Preparedness 106 5.7 Sunda Strait PTHA in a Package of Geographical Information System (GIS) 107 CHAPTER 6 – PTHA APPLICATION FOR ASSETS HAVING INTANGIBLE VALUES AND AN INNOVATIVE CONCEPT PROPOSED FOR DISASTER RISK REDUCTION 110 6.1 Ujung Kulon National Park 110 6.2 Fort Pendem Cilacap 117 6.3 An Innovative Concept Proposed: Object-oriented Disaster Risk Reduction (OO-DRR) 121 6.3.1 Background 121 6.3.2 Existing Approach to DRR 122 6.3.3 Object-oriented DRR (OO-DRR) and its Principles 122 6.3.4 Example of the Concept 124 CHAPTER 7 – CONCLUSIONS AND RECOMMENDATION 128 7.1 Relevant Aspect of the PTHA Application 128 7.2 Technical Recommendation for Mitigation and Regional Planning 129 7.3 Future work 130 Reference 132 List of Appendices 146

    Alam, M. S., Winter, A. O., Galant, G., Shekhar, K., Barbosa, A. R., Motley, M. R., ... & Lomonaco, P. (2020). Tsunami-Like Wave-Induced Lateral and Uplift Pressures and Forces on an Elevated Coastal Structure. Journal of Waterway, Port, Coastal, and Ocean Engineering, 146(4), 04020008.
    Ammon, C. J., Kanamori, H., Lay, T. &Velasco, A. A. (2006). The 17 July 2006 Java tsunami earthquake. Geophys. Res. Lett., Volume 33, pp. 1–5
    Andreas, H., Abidin, H. Z., Kato, T., Ito, T. & Haryono, H. (2008). Lesson From July 17, 2006 South of Java Earthquake : a Note for Ina-Tews., pp. 1–7
    Anita, G., Sandri, L., Marzocchi, W., Argnani, A., Gasparini, P., & Selva, J. (2012). Probabilistic tsunami hazard assessment for messina strait area (Sicily, Italy). Natural Hazards, 64(1), 329-358.
    Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., & Shuto, N. (2007). Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. In Tsunami and its hazards in the Indian and Pacific Oceans (pp. 577-592). Birkhäuser Basel.
    Ashikari, R., & Matsuki, Y. (2016). Development of a real-time system for visualizing tsunami inundation using probe cars--A pilot study on motion characteristics of a car hit by tsunami wave. IEICE Technical Report; IEICE Tech. Rep., 115(504), 89-94.
    Atwater, B. F. (1992). Geologic evidence for earthquakes during the past 2000 years along the Copalis River, southern coastal Washington, J. Geophys. Res. Solid Earth, 97(B2), 1901–1919, doi:10.1029/91jb02346.
    Balai Taman Nasional Ujung Kulon. (2020). Sejarah dan Status Kawasan https://www.ujungkulon.org/ last access: 9 July 2020
    Basco, A., & Salzano, E. (2017). The vulnerability of industrial equipment to tsunami. Journal of Loss Prevention in the Process Industries, 50, 301-307.
    Bellier, O., Siame, L., Beaudouin, T., Villeneuve, M. and Braucher, R. (2001). High slip rate for a low seismicity along the Palu-Koro active fault in Central Sulawesi (Indonesia), Terra Nov., doi:10.1046/j.1365-3121.2001.00382.x.
    BIG (Badan Informasi Geospasial, Indonesia). (2020). http://tides.big.go.id/DEMNAS/ , last access: 20 January 2020.
    Bilek, S. L. & Engdahl, E. R. (2007) Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophys. Res. Lett., Volume 34, pp. 1–5
    Blaser, L. et al., (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment, Bulletin of the Seismological Society of America.
    BMKG. (2018). Katalog Gempabumi (Earthquake Catalog), [online] Available from: http://repogempa.bmkg.go.id/repo_new/repository.php (Accessed 1 December 2018).
    Borrero, J. C. (2005). Field survey of northern Sumatra and Banda Aceh, Indonesia after the Tsunami and earthquake of 26 December 2004. Seismol. Res. Lett., Volume 76, pp. 312–320
    Borrero, J. C. et al. (2009). The tsunami of 2007 September 12, Bengkulu province, Sumatra, Indonesia: post-tsunami field survey and numerical modeling. Geophys. J. Int., Volume 178, pp. 180–194.
    Borrero, J. C. et al. (2011) Field survey of the March 28, 2005, Nias-Simeulue earthquake and Tsunami. Pure Appl. Geophys., Volume 168, pp. 1075–1088.
    Borrero, J. C., Dengler, L., Uslu, B., & Synolakis, C. E. (2006). Numerical modeling of tsunami effects at marine oil terminals in San Francisco Bay. report prepared for Marine Facilities Division of the California State Lands Commission.
    BPS-Statistics Indonesia. (2019). Statistical yearbook of Indonesia 2019, Jakarta.
    BPS-Statistics of Banten Province. (2019). Banten Province in Figures 2019, Serang.
    BPS-Statistics of Lampung Province. (2019). Lampung Province in Figures 2019, Bandar Lampung.
    BPS-Statistics of Donggala Regency. (2018). Donggala Regency in Figures 2018, Donggala.
    BPS-Statistics of Palu Municipality. (2018). Palu Municipatiy in Figures 2018, edited by BPS-Statistics of Palu Municipality, BPS-Statistics of Palu Municipality, Palu.
    BPS-Statistics of Sigi Regency. (2018). Sigi Regency in Figures 2018, Sigi.
    Burbidge, D., Cummins, P. R., Mleczko, R., & Thio, H. K. (2008). A probabilistic tsunami hazard assessment for Western Australia. In tsunami science four Years after the 2004 Indian ocean tsunami (pp. 2059-2088). Birkhäuser Basel.
    Camus, G., Diament, M., Gloaguen, M., Provost, A., and Vincent, P. (1992). Emplacement of a debris avalanche during the 1883 eruption of Krakatau (Sunda Straits, Indonesia), GeoJournal, 28(2), 123–128, doi:10.1007/BF00177224.
    Carey, T. J., Mason, H. B., Barbosa, A. R., & Scott, M. H. (2019). Multihazard earthquake and tsunami effects on soil–foundation–bridge systems. Journal of Bridge Engineering, 24(4), 04019004.
    Chaudhary, B., Hazarika, H., Ishibashi, I., & Abdullah, A. (2017). Sliding and overturning stability of breakwater under combined effect of earthquake and tsunami. Ocean Engineering, 136, 106-116.
    Chaudhary, B., Hazarika, H., Murakami, A., & Fujisawa, K. (2018). Countermeasures for enhancing the stability of composite breakwater under earthquake and subsequent tsunami. Acta Geotechnica, 13(4), 997-1017.
    Chavanich, S., Siripong, A., Sojisuporn, P., & Menasveta, P. (2005). Impact of tsunami on the seafloor and corals in Thailand. Coral reefs, 24(4), 535-535.
    Chen, C. Y. (2012). Assessment of the major hazard potential of interfacial solitary waves moving over a trapezoidal obstacle on a horizontal plateau. Natural Hazards, 62(3), 841-852.
    Chen, C., Melville, B. W., & Nandasena, N. A. K. (2018). Investigations of reduction effect of vertical wall on dam-break-simulated tsunami surge exerted on wharf piles. Journal of Earthquake and Tsunami, 12(02), 1840006.
    Chen, C., Melville, B. W., Nandasena, N. A. K., Shamseldin, A. Y., & Wotherspoon, L. (2016). Experimental study of uplift loads due to tsunami bore impact on a wharf model. Coastal Engineering, 117, 126-137.
    Chen, J., Huang, Z., Jiang, C., Deng, B., & Long, Y. (2013). Tsunami-induced scour at coastal roadways: a laboratory study. Natural Hazards, 69(1), 655-674.
    Chock, G. Y., Carden, L., Robertson, I., Wei, Y., Wilson, R., & Hooper, J. (2018). Tsunami-resilient building design considerations for coastal communities of Washington, Oregon, and California. Journal of Structural Engineering, 144(8), 04018116.
    Coad, P., & Yourdon, E. (1991). Object-oriented analysis. Yourdon press.
    Cruz, A. M., Krausmann, E., & Franchello, G. (2011). Analysis of tsunami impact scenarios at an oil refinery. Natural Hazards, 58(1), 141-162.
    Dahdouh-Guebas, F., & Koedam, N. (2006). Coastal vegetation and the Asian tsunami. Science, 311(5757), 37-38.
    Daly, P., Halim, A., Hundlani, D., Ho, E., & Mahdi, S. (2017). Rehabilitating coastal agriculture and aquaculture after inundation events: Spatial analysis of livelihood recovery in post-tsunami Aceh, Indonesia. Ocean & Coastal Management, 142, 218-232.
    Davies, G., Griffin, J., Løvholt, F., Glimsdal, S., Harbitz, C., Thio, H. K., ... & Baptista, M. A. (2018). A global probabilistic tsunami hazard assessment from earthquake sources. Geological Society, London, Special Publications, 456(1), 219-244.
    Dawson, A. G., and Shi, S. (2000). Tsunami deposits. Pure appl. Geophys, 157, 875–897.
    Dawson, A. G., Hindson, R., Andrade, C., Freitas, C., and Parish, R. (1995). Tsunami sedimentation associated with the Lisbon earthquake of 1 November AD 1755 Boca do Rio, Algarve, Portugal. The Holocene, 5(2), 209–215.
    Dean, R. G., and Dalrymple, R. A. (2004). Coastal Processes with Engineering Application, 1st ed. Cambridge University Press, Cambridge.
    Dhanya, J., & Raghukanth, S. T. G. (2020). Implication of source models on tsunami wave simulations for 2004 (Mw 9.2) Sumatra earthquake. Natural Hazards, 104(1), 279-304.
    Dirjen Perhubungan Darat. (2019). Perhubungan darat dalam angka 2018 (Land transportation in Figures 2018). Jakarta. (in Bahasa Indonesia)
    Dynes, R. R., & Quarantelli, E. (2008). A Brief Note on Disaster Restoration. Reconstruction and Recovery: A Comparative Note Using Post Earthquake Observations.
    Esteban, M., Takagi, H., Mikami, T., Aprilia, A., Fujii, D., Kurobe, S., & Utama, N. A. (2017). Awareness of coastal floods in impoverished subsiding coastal communities in Jakarta: Tsunamis, typhoon storm surges and dyke-induced tsunamis. International Journal of Disaster Risk Reduction, 23, 70-79.
    Farreras, S. F. (2000). Post-tsunami field survey procedures: An outline. Nat. Hazards, 21(2–3), 207–214, doi:10.1023/A:1008049228148.
    Fernando, P., Wikramanayake, E. D., & Pastorini, J. (2006). Impact of tsunami on terrestrial ecosystems of Yala National Park, Sri Lanka. Current Science, 1531-1534.
    Field Jr, R. V., Grigoriu, M., & Emery, J. M. (2015). On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems. Probabilistic Engineering Mechanics, 41, 60-72.
    Fridman, A. M., Alperovich, L. S., Shemer, L., Pustil'nik, L. A., Shtivelman, D., Marchuk, A. G., & Liberzon, D. (2010). Tsunami wave suppression using submarine barriers. Physics-Uspekhi, 53(8), 809.
    Fritz, H. M. and Okal, E. A. (2008). Socotra Island, Yemen: Field survey of the 2004 Indian Ocean tsunami. Nat. Hazards, 46(1), 107–117, doi:10.1007/s11069-007-9185-3.
    Fritz, H. M. et al. (2007). Extreme run-up from the 17 July 2006 Java tsunami. Geophys. Res. Lett., Volume 34, pp. 1–5
    Fujii, Y. & Satake, K. (2006). Source of the July 2006 West Java tsunami estimated from tide gauge records. Geophys. Res. Lett., Volume 33, pp. 2–6
    Fujisawa, K., Esteban, M., & Shibayama, T. (2020). Simulated effectiveness of a car evacuation from a Tsunami. International Journal of Disaster Risk Reduction, 47.
    Garrido, J. M. (2003). Object-Oriented Programming. From Problem Solving to Java. Massachusetts: Charles River Media.
    Geist E.L., Oglesby D.D. (2014) Earthquake Mechanism and Seafloor Deformation for Tsunami Generation. In: Beer M., Kougioumtzoglou I., Patelli E., Au IK. (eds) Encyclopedia of Earthquake Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36197-5_296-1
    Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37(3), 277-314.
    Gelfenbaum, G. and Jaffe, B. (2003). Erosion and sedimentation from the 17 July, 1998 Papua New Guinea tsunami, Pure Appl. Geophys., doi:10.1007/s00024-003-2416-y.
    Ghosh, A. K. (2008). Assessment of earthquake-induced tsunami hazard at a power plant site. Nuclear Engineering and Design, 238(7), 1743-1749.
    Giachetti, T., Paris, R., Kelfoun, K., and Ontowirjo, B. (2012). Tsunami hazard related to a flank collapse of Anak Krakatau Volcano, Sunda Strait, Indonesia, Geol. Soc. London, Spec. Publ., 361(1), 79–90, doi:10.1144/sp361.7.
    González, F. I., Geist, E. L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C. E., ... & Yalciner, A. H. M. E. T. (2009). Probabilistic tsunami hazard assessment at seaside, Oregon, for near‐and far‐field seismic sources. Journal of Geophysical Research: Oceans, 114(C11).
    Gonzalez, F. I., LeVeque, R. J., Adams, L. M., Goldfinger, C., Priest, G. R., & Wang, K. (2014). Probabilistic tsunami hazard assessment (PTHA) for Crescent City, CA.
    Goseberg, N. (2013, June). Experimental run-up determination of single sinusoidal, solitary and N-waves. In The Twenty-third International Offshore and Polar Engineering Conference. OnePetro.
    Goto, Y. (2008). Tsunami damage to oil storage tanks. In The 14 World Conference on Earthquake Engineering, Beijing.
    Grigoriu, M. (1995), Applied non-Gaussian Processes: Examples, Theory, Simulation, Linear Random Vibration, and MATLAB Solutions, chap. 3, PTR Prentice Hall.
    Grigoriu, M. (2009). Reduced order models for random functions. Application to stochastic problems. Applied Mathematical Modelling, 33(1), 161-175.
    Grigoriu, M. (2012), Stochastic Systems: Uncertainty Quantification and Propagation. Springer Science and Business Media.
    Gross M. (2018) Last call to save the rhinos. Current Biology 28, R1–R16
    Guler, H. G., Baykal, C., Arikawa, T., & Yalciner, A. C. (2018). Numerical assessment of tsunami attack on a rubble mound breakwater using OpenFOAM®. Applied Ocean Research, 72, 76-91.
    Gusiakov, V. K. (2009). Tsunami history: recorded. The sea, 15, 23-53.
    Gusman, A. R., Tanioka, Y., Kobayashi, T., Latief, H. & Pandoe, W. (2010). Slip distribution of the 2007 Bengkulu earthquake inferred from tsunami waveforms and InSAR data. J. Geophys. Res. Solid Earth. Volume 115, pp. 1–14
    Hadi, S. and Kurniawati, E. (2018). Jumlah Korban Tewas Terkini Gempa dan Tsunami Palu 2.113 Orang, https://nasional.tempo.co/read/1138400/jumlah-korban-tewas-terkini-gempa-dan-tsunami-palu-2-113-orang/full&view=ok. (in Bahasa Indonesia)
    Hamada, M. (2017). Measures for Earthquake–and Tsunami–Resilience Enhancement of Industrial Parks in Bay Areas. IPA News Letter, Volume 2 Issue 4.
    Handayani, S., Nasution, A., & Akbar, H. (2020). A Cluster of Leading Commodities in the Plantation of Simeulu in 15 Years After the Tsunami. Systematic Reviews in Pharmacy, 11(2).
    Hariyadi, ARS, Priambudi, A, Setiawan, R, Daryan, D, Yayus, A, and Purnama, H. (2011). Estimating the population structure of Javan rhinos (Rhinoceros sondaicus) in Ujung Kulon National Park using the mark-recapture method based on video and camera trap identification. Pachyderm No. 49 January–June.
    Hariyadi, ARS, Sajuthi, D, Astuti, DA, Alikodra, HS, and Maheshwari, H. (2016). Analysis of nutritional quality and food digestibility in male Javan rhinoceros (Rhinoceros sondaicus) in Ujung Kulon National Park. Pachyderm No. 57 July 2015–June.
    Hawkes, A. D., Bird, M., Cowie, S., Grundy-Warr, C., Horton, B. P., Shau-Hwai, A. T., Law, L., Macgregor, C., Nott, J., Ong, J. E., Rigg, J., Robinson, R., Tan-Mullins, M., Sa, T. T., Yasin, Z., and Aik, L. W. (2007). Sediments deposited by the 2004 Indian Ocean Tsunami along the Malaysia–Thailand Peninsula, Mar. Geol., doi:10.1016/j.margeo.2007.02.017.
    Hébert, H. et al. (2012). The 2006 July 17 Java (Indonesia) tsunami from satellite imagery and numerical modeling: A single or complex source? Geophys. J. Int., Volume 191, pp. 1255–1271
    Heidarzadeh, M., & Kijko, A. (2011). A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean. Natural hazards, 56(3), 577-593.
    Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., and Wijanarto, A.B. (2020). Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. Ocean Engineering, 195, https://doi.org/10.1016/j.oceaneng.2019.106733.
    Heidarzadeh, M., Muhari, A. and Wijanarto, A. B. (2018). Insights on the Source of the 28 September 2018 Sulawesi Tsunami, Indonesia Based on Spectral Analyses and Numerical Simulations. Pure Appl. Geophys., 176(September 2018), 25–43, doi:10.1007/s00024-018-2065-9.
    Hidayat, D., Barker, J. S. &Satake, K. (1995). Modeling the seismic source and tsunami generation of the December 12, 1992 Flores Island, Indonesia, earthquake. Pure Appl. Geophys. PAGEOPH, Volume 144, pp. 537–554
    Horspool, N., Pranantyo, I., Griffin, J., Latief, H., Natawidjaja, D. H., Kongko, W., Cipta, A., Bustaman, B., Anugrah, S. D. and Thio, H. K. (2014). A probabilistic tsunami hazard assessment for Indonesia, Nat. Hazards Earth Syst. Sci., doi:10.5194/nhess-14-3105-2014.
    Hsiao, S, and Lin, L. (2010). Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling. Coastal Engineering, Volume 57, 1-18. 2010
    Hsiao, S., Hsu, T, Lin, T., Chang, Y. (2008). On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering, Volume 55, 975–988.
    Imamura, F., Gica, E., Takahashi, T. & Shuto, N. (1995). Numerical simulation of the 1992 Flores tsunami: Interpretation of tsunami phenomena in northeastern Flores Island and damage at Babi Island. Pure Appl. Geophys. PAGEOPH, Volume 144, pp. 555–568
    IOC Manuals and Guides No. 37. (2014). International Tsunami Survey Team (ITST) Post-Tsunami Survey Field Guide, 2nd ed., edited by D. Dominey-Howes, L. Dengler, J. Cunnen, and T. Aarup, the United Nations Educational, Scientific and Cultural Organization, Paris.
    Ishibashi, H., Akiyama, M., Frangopol, D. M., Koshimura, S., Kojima, T., & Nanami, K. (2020). Framework for estimating the risk and resilience of road networks with bridges and embankments under both seismic and tsunami hazards. Structure and Infrastructure Engineering, 17(4), 494-514.
    Izumi, T. (2018). Investing in Disaster Risk Reduction: Implications for science and technology-based on case studies from the local and national governments, the private sector and a university network. In Science and Technology in Disaster Risk Reduction in Asia (pp. 223-237). Academic Press.
    Jianhong, Y., Dongsheng, J., Ren, W., & Changqi, Z. (2013). Numerical study of the stability of breakwater built on a sloped porous seabed under tsunami loading. Applied Mathematical Modelling, 37(23), 9575-9590.
    Jihad, A., Muksin, U., Suppasri, A., Ramli, M., & Banyunegoro, V. H. (2020). Coastal and settlement typologies-based tsunami modeling along the northern Sumatra seismic gap zone for disaster risk reduction action plans. International Journal of Disaster Risk Reduction, 51, 101800.
    Johnson, R. (2011). Japan's 2011 earthquake and tsunami: Food and Agriculture Implications (p. 18). Congressional Research Service.
    Kafle, J., Kattel, P., Mergili, M., Fischer, J. T., & Pudasaini, S. P. (2019). Dynamic response of submarine obstacles to two-phase landslide and tsunami impact on reservoirs. Acta Mechanica, 230(9), 3143-3169.
    Kang, G. C., Kim, D. S., & Kim, T. H. (2014). Quay wall stability considering earthquake and tsunami overtopping forces together in the active condition. Natural Hazards Review, 15(4), 04014011.
    Kasbani. (2019). Pers Rilis Aktivitas Gunung Anak Krakatau 28 Desember 2018 (Press release Anak Krakatau volcano activity), available at https://magma.vsi.esdm.go.id/press/view.php?id=173, last access 22 September 2019 (in Bahasa Indonesia).
    Kathiresan, K., & Rajendran, N. (2005). Coastal mangrove forests mitigated tsunami. Estuarine, Coastal and Shelf Science, 65(3), 601-606.
    Kennedy, J., Ashmore, J., Babister, E., & Kelman, I. (2008). The meaning of ‘build back better’: evidence from post‐tsunami Aceh and Sri Lanka. Journal of Contingencies and Crisis Management, 16(1), 24-36.
    Kiker, G. A., Clark, D. J., Martinez, C. J., & Schulze, R. E. (2006). A Java-based, object-oriented modeling system for southern African hydrology. Transactions of the ASABE, 49(5), 1419-1433.
    Kobayashi, E., Koshimura, S., & Yoneda, S. (2008, July). Guidelines for Ship Evacuation from a Tsunami Attack. In The Eighteenth International Offshore and Polar Engineering Conference. OnePetro.
    Kobayashi, N., & Lawrence, A. R. (2004). Cross‐shore sediment transport under breaking solitary waves. Journal of Geophysical Research: Oceans, 109(C3).
    Kongko, W. (2012). South Java Tsunami Model Using Highly Resolved Data and Probable Tsunamigenic Sources. Ph.D. Dissertation, Leibniz Universität Hannover.
    Kongko, W., Schlurmann, T. & Fritz, H. M. (2009). Java Tsunami: Tsunami Modeling and the Probable Causes of the Extreme Run-up. Geophys. Res. Abstr. Java Tsunami Earthq. Geophys. Res. Lett. Proj. GITEWS, Volume 11, pp. 2009–5702.
    Koseki, J., Koda, M., Matsuo, S., Takasaki, H., & Fujiwara, T. (2012). Damage to railway earth structures and foundations caused by the 2011 off the Pacific Coast of Tohoku Earthquake. Soils and Foundations, 52(5), 872-889.
    Kramer Y. (2014). Minimum sample size for detection of Gutenberg-Richter’s b-value. arXiv:1410.1815 [physics.geo-ph]
    Kumar, B. G., Sendhil, R., Venkatesh, P., Raja, R., Jayakumar, V., & Jeyakumar, S. (2009). Socio-economic impact assessment of livelihood security in agriculture, animal husbandry and aquaculture on the tsunami-hit lands of Andaman. Agricultural Economics Research Review, 22(347-2016-16862), 483-494.
    Kumar, B. G., Sendhil, R., Venkatesh, P., Raja, R., Jayakumar, V., & Jeyakumar, S. (2009). Socio-economic impact assessment of livelihood security in agriculture, animal husbandry and aquaculture on the tsunami-hit lands of Andaman. Agricultural Economics Research Review, 22(347-2016-16862), 483-494.
    Lai, T., Nasseri, A., Yin, Y. J., Katiyar, V., & Turel, M. (2014). Modeling railway damage due to shake, liquefaction, and tsunami for the 2011 Tohoku earthquake. In International Efforts in Lifeline Earthquake Engineering (pp. 267-274).
    Latief, H., Puspito, N. T. and Fumihiko, I. (2000). Tsunami Catalog and Zones in Indonesia, J. Nat. Disaster Sci., 22(1), 25–43.
    Lauterjung, J., Münch, U., & Rudloff, A. (2010). The challenge of installing a tsunami early warning system in the vicinity of the Sunda Arc, Indonesia. Natural Hazards and Earth System Sciences, 10(4), 641-646.
    Lavigne, F., Gomez, C., Giffo, M., Wassmer, P., Hoebreck, C., Mardiatno, D., Prioyono, J. and Paris, R. (2007). Field observations of the 17 July 2006 Tsunami in Java, Nat. Hazards Earth Syst. Sci., doi:10.5194/nhess-7-177-2007.
    Lay, T. et al. (2011). The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures. Geophys. Res. Lett., Volume 38, pp. 2–6
    Leelawat, N., Suppasri, A., Latcharote, P., Abe, Y., Sugiyasu, K., & Imamura, F. (2018). Tsunami evacuation experiment using a mobile application: A design science approach. International Journal of Disaster Risk Reduction, 29, 63-72.
    LeVeque, R. J., K. Waagan, F. I. González, D. Rim, and G. Lin .(2016). Generating random earthquake events for probabilistic tsunami hazard assessment. Pure Appl. Geophys., 173(12), 3671–3692.
    Liu, Y., Santos, A., Wang, S. M., Shi, Y., Liu, H., & Yuen, D. A. (2007). Tsunami hazards along Chinese coast from potential earthquakes in South China Sea. Physics of the earth and planetary interiors, 163(1-4), 233-244.
    Løvholt, F., G. Pedersen, S. Bazin, D. Kühn, R. Bredesen, and C. Harbitz. (2012). Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. J. Geophys. Res., 117, C03047, doi:10.1029/2011JC007616.
    Lynett, P. J., Borrero, J. C., Liu, P. L. F. and Synolakis, C. E. (2003). Field survey and numerical simulations: A review of the 1998 Papua New Guinea tsunami, Pure Appl. Geophys., doi:10.1007/s00024-003-2422-0.
    Maeno, F. and Imamura, F. (2011). Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. J. Geophys. Res. Solid Earth, 116(9), 1–24, doi:10.1029/2011JB008253.
    Maramai, A. and Tinti, S. (1997). The 3 June 1994 Java Tsunami: A post-event survey of the coastal effects. Nat. Hazards, doi:10.1023/A:1007957224367.
    Mardiatno, D., Malawani, M. N., & Nisaa, R. M. R. (2020). The future tsunami risk potential as a consequence of building development in Pangandaran Region, West Java, Indonesia. International Journal of Disaster Risk Reduction, 46, 101523.
    Mardiatno, D., Malawani, M. N., Annisa, D. N., & Wacano, D. (2017). Review on tsunami risk reduction in Indonesia based on coastal and settlement typology. The Indonesian Journal of Geography, 49(2), 186-197.
    Masuda, K., Masuda, M., Minami, K., & Ikoma, T. (2015, May). On optimal method of mooring ship in floating tsunami protection wharf. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 56543, p. V006T05A020). American Society of Mechanical Engineers.
    Masuda, K., Masuda, M., Minami, K., Ikoma, T., Ohno, M., & Nakamura, F. (2014, June). Study on Development of the Floating Pier for Damage Protection Control of Ship in Tsunami. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 45493, p. V007T05A020). American Society of Mechanical Engineers.
    Masuda, M., Minami, K., & Masuda, K. (2016, June). A Study on Tsunami Protection Measures by the Floating Tsunami Protection Wharf and the Tsunami Mooring Bitt for Mooring Vessel at a Wharf. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 49972, p. V006T05A017). American Society of Mechanical Engineers.
    Matsutomi, H., Shuto, N., Imamura, F., and Takahashi, T. (2001). Field survey of the 1996 Irian Jaya earthquake tsunami in Biak Island, Nat. Hazards, 24(3), 199–212, doi:10.1023/A:1012042222880.
    Mattsson, E., Ostwald, M., Nissanka, S. P., Holmer, B., & Palm, M. (2009). Recovery and protection of coastal ecosystems after tsunami event and potential for participatory forestry CDM–examples from Sri Lanka. Ocean & Coastal Management, 52(1), 1-9.
    Metropolis, N., & Ulam, S. (1949). The monte carlo method. Journal of the American statistical association, 44(247), 335-341.
    Meutia, Z. D., Rosyidie, A., Zulkaidi, D., & Maryati, S. (2020). The Role of Heritage Planning in Dark Sites Case Study: Tsunami Sites in Banda Aceh. International Journal of Education, Language, and Religion, 2(2), 64-76.
    Mikami, T., Kinoshita, M., Matsuba, S., Watanabe, S., & Shibayama, T. (2015). Detached breakwaters effects on tsunamis around coastal dykes. Procedia Engineering, 116, 422-427.
    Mikami, T., Shibayama, T., Esteban, M., Takabatake, T., Nakamura, R., Nishida, Y., Achiari, H., Rusli, Marzuki, A. G., Marzuki, M. F. H., Stolle, J., Krautwald, C., Robertson, I., Aránguiz, R. and Ohira, K. (2019). Field Survey of the 2018 Sulawesi Tsunami: Inundation and Run-up Heights and Damage to Coastal Communities. Pure Appl. Geophys., doi:10.1007/s00024-019-02258-5.
    Moore, A., Nishimura, Y., Gelfenbaum, G., Kamataki, T., and Triyono, R. (2006). Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia. Earth Planets Sp., 58, 253–258.
    Morton, R. A., Gelfenbaum, G., and Jaffe, B. E. (2007). Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol., doi:10.1016/j.sedgeo.2007.01.003.
    Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H.D., Kriswati, E., Supartoyo, Wijanarto, A.B., Imamura, F., and Arikawa, T. (2019). The December 2018 Anak Krakatau volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure and Applied Geophysics, https://doi.org/10.1007/s00024-019-02358-2.
    Muhari, A., Imamura, F., Arikawa, T. and Afriyanto, B. (2018). Finding of the unexpected tsunami due to the strike-slip fault at central Sulawesi, Indonesia on 28 September 2018, from the preliminary field survey at Palu, Temblor [online] Available from: http://temblor.net/earthquake-insights/finding-of-the-unexpected-tsunami-due-to-the-strike-slip-fault-at-central-sulawesi-indonesia-on-28-september-2018-from-the-preliminary-field-survey-at-palu-7855/.
    Muhari, A., Imamura, F., Koshimura, S. and Post, J. (2011). Examination of three practical run-up models for assessing tsunami impact on highly populated areas, Nat. Hazards Earth Syst. Sci., 11(12), 3107–3123, doi:10.5194/nhess-11-3107-2011.
    Mukai, Y., Suzuki, T., Makino, W., Iwabuchi, T., So, M., & Urabe, J. (2014). Ecological impacts of the 2011 Tohoku Earthquake Tsunami on aquatic animals in rice paddies. Limnology, 15(3), 201-211.
    Nouri, Y., Nistor, I., Palermo, D., & Cornett, A. (2010). Experimental investigation of tsunami impact on free standing structures. Coastal Engineering Journal, 52(01), 43-70.
    Ohnishi, T. (2012). The disaster at Japan's Fukushima-Daiichi nuclear power plant after the March 11, 2011 earthquake and tsunami, and the resulting spread of radioisotope contamination. Radiation Research, 177(1), 1-14.
    Okamura, K. (2015). Tsunami and heritage after the 2011 Great East Japan Earthquake. Water & heritage. Material, conceptual and spiritual connections. Sidestone Press, Leiden, 245-256.
    Oktari, R. S., Shiwaku, K., Munadi, K., & Shaw, R. (2018). Enhancing community resilience towards disaster: The contributing factors of school-community collaborative network in the tsunami affected area in Aceh. International Journal of Disaster Risk Reduction, 29, 3-12.
    Omira, R., Dogan, G. G., Hidayat, R., Husrin, S., Prasetya, G., Annunziato, A., et al. (2019). The September 28th, 2018, Tsunami In Palu-Sulawesi, Indonesia: A Post-Event Field Survey. Pure Appl. Geophys., 176(4), 1379–1395, doi:10.1007/s00024-019-02145-z.
    Oshnack, M. E., van de Lindt, J., Gupta, R., Cox, D., & Aguíñiga, F. (2009). Effectiveness of small onshore seawall in reducing forces induced by Tsunami bore: large scale experimental study.
    Pacific Gas and Electric Company (PGEC). (2010). Methodology for probabilistic tsunami hazard analysis: Trial application for the Diablo Canyon Power Plant site. Presentation to the PEER Workshop on Tsunami Hazard Analyses for Engineering Design Parameters, Berkeley, CA.
    Pamudji, A. K., Susilorini, R. M. I. R., Ismail, A., & Amasto, A. H. (2020). The Effectiveness of Mobile Application of Earthquake and Tsunami Early Warning System in Community Based Disaster Risk Reduction. Int. J. Eng. Res. Technol., 13.
    Paris, R., Fournier, J., Poizot, E., Etienne, S., Morin, J., Lavigne, F., and Wassmer, P. (2010). Boulder and fine sediment transport and deposition by the 2004 tsunami in Lhok Nga (western Banda Aceh, Sumatra, Indonesia): A coupled offshore-onshore model, Mar. Geol., doi:10.1016/j.margeo.2009.10.011.
    Paris, R., Wassmer, P., Lavigne, F., Belousov, A., Belousova, M., Iskandarsyah, Y., Benbakkar, M., Ontowirjo, B., and Mazzoni, N. (2014). Coupling eruption and tsunami records: The Krakatau 1883 case study, Indonesia, Bull. Volcanol., 76(4), 1–23, doi:10.1007/s00445-014-0814-x.
    Peters, R., Jaffe, B., and Gelfenbaum, G. (2007). Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America, Sediment. Geol., doi:10.1016/j.sedgeo.2007.01.015,
    Prabowo, M. R. 2019). Siklon Tropis “Kenanga” Tumbuh di Samudra Hindia Selatan Sumatera (Tropical cyclone to grow in south Sumatra-Indian Ocean), available at https://www.bmkg.go.id/berita/?p=siklon-tropis-kenanga-tumbuh-di-samudera-hindia-selatan-sumatera&lang=ID&tag=press-release, last access 15 September 2019 (in Bahasa Indonesia).
    Prasetya, G. S., De Lange, W. P. and Healy, T. R.: The Makassar Strait Tsunamigenic Region. [online] Available from: http://www.bom.gov.au/info/tsunami/tsunami_info.shtml#physicshttp://www.msnbc.msn.com/id/7317057/.
    Prescott, J. F. (2014). The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Veterinary microbiology, 171(3-4), 273-278.
    Pusat Studi Gempa Nasional (PuSGeN). (2017). Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017 (Map of Indonesia Earthquake Sources and Hazards in 2017). Pusat Penelitian dan Pengembangan Perumahan dan Permukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum dan Perumahan Rakyat, Bandung. (in Bahasa Indonesia)
    Raghukanth, S. T. G., & Sangeetha, S. (2016). A stochastic model for earthquake slip distribution of large events. Geomatics, Natural Hazards and Risk, 7(2), 493-521.
    Rahman, S., Akib, S., Khan, M. T. R., & Shirazi, S. M. (2014). Experimental study on tsunami risk reduction on coastal building fronted by sea wall. The Scientific World Journal, 2014.
    Rahmat, UM, Santosa, Y, Prasetyo, LB, and Kartono, A.P., (2012). Habitat Suitability Modeling of Javan Rhino (Rhinoceros sondaicus Desmarest 1822) Ujung Kulon National Park JMHT Vol. EISSN: 2089-2063 DOI: 10.7226/jtfm.18.2.129 XVIII, (2):129-137
    Rajesh, B. G., & Choudhury, D. (2018). Seismic stability of seawalls under earthquake and tsunami forces using a modified pseudodynamic method. Natural Hazards Review, 19(3), 04018005.
    Ramono, W., Isnan, M. W., M., Sadjudin, H.R, Gunawan, H, Dahlan, E.N., Sectionov, Pairah, Hariyadi, A.R., Syamsudin, M., Talukdar, B.K., And Gillison, A.N. (2009). Report on A Second Habitat Assessment for the Javan Rhinoceros (Rhinoceros sondaicus sondaicus) within the Island of Java. International Rhino Foundation, Yulee, Fl, Usa.
    Reese, S. et al. (2007). Tsunami vulnerability of buildings and people in South Java - Field observations after the July 2006 Java tsunami. Nat. Hazards Earth Syst. Sci., Volume 7, pp. 573–589
    Reis, C. (2019). Pile-Supported Quay Submitted to Successive Earthquake and Tsunami Actions. In Ports 2019: Port Engineering (pp. 32-43). Reston, VA: American Society of Civil Engineers.
    Richmond, B. M., Buckley, M., Gelfenbaum, G., Morton, R. A., Watt, S., and Jaffe, B. E. (2010). Recent storm and tsunami coarse-clast deposit characteristics, southeast Hawaiʻi, Mar. Geol., doi:10.1016/j.margeo.2010.08.001.
    Rico, T. (2014). The limits of a ‘heritage at risk’framework: the construction of post-disaster cultural heritage in Banda Aceh, Indonesia. Journal of Social Archaeology, 14(2), 157-176.
    Rikitake, T., & Aida, I. (1988). Tsunami hazard probability in Japan. Bulletin of the Seismological Society of America, 78(3), 1268-1278.
    Ross, S. M. (2014). Introduction to probability models. Academic press.
    Rudianto, E., Muhari, A., Harada, K., Matsutomi, H., Siry, H. Y., Sadtopo, E., & Kongko, W. (2016). Ecosystem-based tsunami disaster risk reduction in Indonesian coastal areas. In Tsunamis and Earthquakes in Coastal Environments (pp. 31-46). Springer, Cham.
    Said, A. M., Mahmud, A. R., & Abas, F. (2011). Community preparedness for tsunami disaster: a case study. Disaster Prevention and Management: An International Journal.
    Saito, T. (2019). Tsunami generation and propagation. Tokyo: Springer Japan.
    Sakakiyama, T., Matsuura, S., & Matsuyama, M. (2009). Tsunami force acting on oil tanks and salembuckling analysis for tsunami pressure. Journal of Disaster Research, 4(6), 427-434.
    Sakurai, A., Sato, T., & Murayama, Y. (2020). Impact evaluation of a school-based disaster education program in a city affected by the 2011 great East Japan earthquake and tsunami disaster. International Journal of Disaster Risk Reduction, 47, 101632.
    Salem, H., Mohssen, S., Nishikiori, Y., & Hosoda, A. (2016). Numerical collapse analysis of Tsuyagawa bridge damaged by Tohoku tsunami. Journal of Performance of Constructed Facilities, 30(6), 04016065.
    Sasagawa, T., & Hirata, K. (2012, September). Tsunami evaluation and countermeasures at Onagawa nuclear power plant. In Proc. 15th World Conf. Earthquake Engineering, Lisbon, Portugal (pp. 24-28).
    Sassa, S. and Takagawa, T. (2019). Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters, Landslides, 16(1), 195–200, doi:10.1007/s10346-018-1114-x.
    Schimmels, S., Sriram, V., & Didenkulova, I. (2016). Tsunami generation in a large scale experimental facility. Coastal Engineering, 110, 32-41.
    Sepulveda, I. (2017). Tsunami Hazard Assessments with Consideration of Uncertain Inputs. Ph.D. Dissertation, Cornell University.
    Sepúlveda, I., Liu, P. L. F., & Grigoriu, M. (2019). Probabilistic tsunami hazard assessment in South China Sea with consideration of uncertain earthquake characteristics. Journal of Geophysical Research: Solid Earth, 124(1), 658-688.
    Sepulveda, I., Liu, P. L. F., Grigoriu, M., & Pritchard, M. (2017). Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location. Journal of Geophysical Research: Solid Earth, 122(9), 7252-7271.
    Setiawan R. (2018). Preventing Global Extinction of the Javan Rhino: Tsunami Risk and Future Conservation Direction. Conservation Letters, 11(1)
    Setiawan, R., Gerber, B. D., Rahmat, U. M., Daryan, D., Firdaus, A. Y., Haryono, M., Khairani, K. O., Kurniawan, Y., Long, B., Lyet, A., Muhiban, M., Mahmud, R., Muhtarom, A., Purastuti, E., Ramono, W. S., Subrata, D., and Sunarto, S. (2018). Preventing global extinction of the Javan Rhino: Tsunami risk and future conservation direction. Conserv. Lett., 11(1), doi:10.1111/conl.12366.
    Setiawan, R., Gerber, B. D., Rahmat, U. M., Daryan, D., Firdaus, A. Y., Haryono, M., ... & Sunarto, S. (2018). Preventing global extinction of the Javan rhino: tsunami risk and future conservation direction. Conservation Letters, 11(1), e12366.
    Shaw, R. (Ed.). (2012). Community-based disaster risk reduction. Emerald Group Publishing.
    Shearer, P. (2009), M, Introduction to Seismology, Cambridge Univ. Press.
    Shimamura, S., Imamura, F., & Abe, I. (2012). Damage to the railway system along the coast due to the 2011 Tohoku Earthquake Tsunami. Journal of Natural Disaster Science, 34(1), 105-113.
    Shoji, G., & Moriyama, T. (2007). Evaluation of the structural fragility of a bridge structure subjected to a tsunami wave load. Journal of Natural Disaster Science, 29(2), 73-81.
    Singh, R., Mangaraj, S., & Shukla, B. D. (2006). Impact of Tsunami on Agriculture and Role of Agro-Processing for Rehabilitation. Agricultural Engineering Today, 30(1and2), 64-70.
    Smit, A., Kijko, A., & Stein, A. (2017). Probabilistic tsunami hazard assessment from incomplete and uncertain historical catalogues with application to tsunamigenic regions in the Pacific Ocean. Pure and Applied Geophysics, 174(8), 3065-3081.
    Soeriaatmadja, W. (2019). Indonesia plans traffic system for busy Sunda Strait, available at https://www.straitstimes.com/asia/se-asia/indonesia-plans-traffic-system-for-busy-sunda-strait, last accessed 10 September 2019.
    Sørensen, M. B., Spada, M., Babeyko, A., Wiemer, S., & Grünthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research: Solid Earth, 117(B1).
    Srinivasalu, S., Thangadurai, N., Switzer, A. D., Ram Mohan, V., and Ayyamperumal, T. (2007). Erosion and sedimentation in Kalpakkam (N Tamil Nadu, India) from the 26th December 2004 tsunami, Mar. Geol., doi:10.1016/j.margeo.2007.02.003.
    Srisutam, C. and Wagner, J. F. (2010). Tsunami sediment characteristics at the Thai Andaman Coast. Pure Appl. Geophys., doi:10.1007/s00024-009-0015-2.
    Strunz, G., Post, J., Zosseder, K., Wegscheider, S., Mück, M., Riedlinger, T., Mehl, H., Dech, S., Birkmann, J., Gebert, N., Harjono, H., Anwar, H. Z., Sumaryono, Khomarudin, R. M. and Muhari, A. (2011). Tsunami risk assessment in Indonesia, Nat. Hazards Earth Syst. Sci., doi:10.5194/nhess-11-67-2011.
    Suga, Y., Koshimura, S., & Kobayashi, E. I. (2013). Risk evaluation of drifting ship by tsunami. Journal of Disaster Research, 8(4), 573-583.
    Sumunar, DRS, Salsabila, S Fitriana, S., Hamid H.A. (2019). Landsat-8 Multispectral Satellite Imagery for Rhinoceros Sondaicus Habitat Spatial Distribution Modelling through Biophysical Parameters in Ujung Kulon National Park, Indonesia. IOP Conf. Series: Earth and Environmental Science 286 012044.
    Synolakis, C. E. (1987). The runup of solitary waves. Journal of Fluid Mechanics, 185, 523-545.
    Synolakis, C. E. (1989). Are solitary waves the limiting waves in long wave runup?. In Coastal Engineering 1988 (pp. 219-233).
    Synolakis, C. E. and Okal, E. A. (2005). 1992-2002: Perspective on Decade of Post-Tsunami Surveys, in Tsunamis: Case Studies and Recent Developments, edited by K. Satake, pp. 1–29, Springer Science & Business Media.
    Tadepalli, S., & Synolakis, C. E. (1994). The run-up of N-waves on sloping beaches. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 445(1923), 99-112.
    Takabatake, T., Fujisawa, K., Esteban, M., & Shibayama, T. (2020). Simulated effectiveness of a car evacuation from a tsunami. International Journal of Disaster Risk Reduction, 47, 101532.
    Takabatake, T., Fujisawa, K., Esteban, M., & Shibayama, T. (2020). Developing Agent-Based Tsunami Evacuation Model for Pedestrian and Car Evacuees. Coastal Engineering Proceedings, (36v), 12-12.
    Takahashi, H., Sassa, S., Morikawa, Y., & Maruyama, K. (2018). Centrifuge model tests and circular slip analyses to evaluate reinforced composite-type breakwater stability against tsunami. In Physical Modelling in Geotechnics (pp. 589-594). CRC Press.
    Tanaka, N., Sato, H., Igarashi, Y., Kimiwada, Y., & Torita, H. (2018). Effective tree distribution and stand structures in a forest for tsunami mitigation considering the different tree-breaking patterns of tree species. Journal of Environmental Management, 223, 925-935.
    Tanikawa, H., Managi, S., & Lwin, C. M. (2014). Estimates of lost material stock of buildings and roads due to the Great East Japan Earthquake and tsunami. Journal of Industrial Ecology, 18(3), 421-431.
    Tarbotton, C., Dall'Osso, F., Dominey-Howes, D., & Goff, J. (2015). The use of empirical vulnerability functions to assess the response of buildings to tsunami impact: comparative review and summary of best practice. Earth-Science Reviews, 142, 120-134.
    Tchiadje, N. F. T. (2007). Strategies to reduce the impact of salt on crops (rice, cotton and chili) production: A case study of the tsunami-affected area of India. Desalination, 206(1-3), 524-530.
    Thio, H. K., Somerville, P., & Ichinose, G. (2007). Probabilistic analysis of strong ground motion and tsunami hazards in Southeast Asia. Journal of Earthquake and Tsunami, 1(02), 119-137.
    Triatmadja, R., & Nasution, S. S. (2014). Evaluation of tsunami evacuation routes at Bengkulu City Indonesia using numerical simulations. ASEAN Engineering Journal, 3(2), 9-20.
    Tsuji, Y. et al. (1995). Field survey of the East Java earthquake and tsunami of June 3, 1994. Pure Appl. Geophys. PAGEOPH, Volume 144, pp. 839–854
    Tsuno, S. (2020). Real-time Prediction Method of Tsunami Inundation for Railway Line. Quarterly Report of RTRI, 61(2), 90-95.
    Ulrich, T., Vater, S., Madden, E. H., Behrens, J., van Dinther, Y., van Zelst, I., Fielding, E. J., Liang, C. and Gabriel, A. A. (2019). Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami, Pure Appl. Geophys., doi:10.1007/s00024-019-02290-5.
    Van Den Bergh, G. D., Boer, W., De Haas, H., Van Weering, T. C. E., and Van Wijhe, R. (2003). Shallow marine tsunami deposits in Teluk Banten (NW Java, Indonesia), generated by the 1883 Krakatau eruption, Mar. Geol., 197(1–4), 13–34, doi:10.1016/S0025-3227(03)00088-4.
    Verbeek, R. D. M. (1884). The Krakatoa eruption. Nature, 10–15
    Vermaat, J. E., & Thampanya, U. (2006). Mangroves mitigate tsunami damage: A further response. Estuarine, Coastal and Shelf Science, 69(1-2), 1-3.
    Wang, X., (2009). COMCOT User Manual Ver. 1.7. Cornell University, 6, pp.1–59
    Wanger, T. C., Ainun, N., Brook, B. W., Friess, D. A., Oh, R. R., Rusdin, A., ... & Tjoa, A. (2020). Ecosystem-based tsunami mitigation for tropical biodiversity hotspots. Trends in Ecology & Evolution, 35(2), 96-100.
    Ward, S. N., & Asphaug, E. (2000). Asteroid impact tsunami: a probabilistic hazard assessment. Icarus, 145(1), 64-78.
    Wei, Z., Dalrymple, R. A., Hérault, A., Bilotta, G., Rustico, E., & Yeh, H. (2015). SPH modeling of dynamic impact of tsunami bore on bridge piers. Coastal Engineering, 104, 26-42.
    Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the seismological Society of America, 84(4), 974-1002.
    Wesnousky, S. G. (1994). The Gutenberg-Richter or characteristic earthquake distribution, which is it?. Bulletin of the Seismological Society of America, 84(6), 1940-1959.
    Widiyanto W, Hsiao S C, Chen W B, Santoso P B, Imananta R T and Lian W C (2020). Run-up, inundation, and sediment characteristics of the 22 December 2018 Sunda Strait tsunami, Indonesia Nat. Hazards Earth Syst. Sci. 20 933–946 https://doi.org/10.5194/nhess-20-933-2020
    Widiyanto, W., Santoso, P. B., Hsiao, S.-C., and Imananta, R. T. (2019). Post-event field survey of 28 September 2018 Sulawesi earthquake and tsunami. Nat. Hazards Earth Syst. Sci., 19, 2781–2794, https://doi.org/10.5194/nhess-19-2781-2019.
    Widiyantoro, S. et al. (2020). Implications for megathrust earthquakes and tsunamis from seismic gaps south of Java Indonesia. Sci. Rep., Volume 10, pp. 1–11
    Wieczorek, G. F., Geist, E. L., Motyka, R. J., & Jakob, M. (2007). Hazard assessment of the Tidal Inlet landslide and potential subsequent tsunami, Glacier Bay National Park, Alaska. Landslides, 4(3), 205-215.
    Wilkinson, C., Souter, D., & Goldberg, J. (2005). Status of coral reefs in tsunami-affected countries: 2005. Australian Institute of Marine Science; Global Coral Reef Monitoring Network.
    Williams, I. A., & Fuhrman, D. R. (2016). Numerical simulation of tsunami-scale wave boundary layers. Coastal engineering, 110, 17-31.
    Williams, J. H., Paulik, R., Wilson, T. M., Wotherspoon, L., Rusdin, A., & Pratama, G. M. (2020). Tsunami fragility functions for road and utility pole assets using field survey and remotely sensed data from the 2018 Sulawesi tsunami, Palu, Indonesia. Pure and Applied Geophysics, 177(8), 3545-3562.
    Witt, D. L., Young, Y. L., & Yim, S. C. (2011). Field investigation of tsunami impact on coral reefs and coastal sandy slopes. Marine Geology, 289(1-4), 159-163.
    Wu, E. C., Ma, W. H., Chen, Y. L., Wu, H. L., Hu, K. C., Hsiao, S. C., & Wu, Y. C. (2016). Probabilistic Tsunami Hazard Analysis—Application to Maanshan Nuclear Power Plant in Taiwan. Journal of Coastal Research, (75 (10075)), 1267-1271.
    Wüthrich, D., Pfister, M., Nistor, I., & Schleiss, A. J. (2018). Experimental study on the hydrodynamic impact of tsunami-like waves against impervious free-standing buildings. Coastal Engineering Journal, 60(2), 180-199.
    Yalciner, A. C., Hidayat, R., Husrin, S., Prasetya, G., Annunziato, A., Dogan, G.G., et al. (2018). The 28th September 2018 Palu Earthquake and Tsunami ITST , 07-11 November 2018, Post Tsunami Field Survey Report (Short), (November), 1–24.
    Yalciner, A. C., Synolakis, C. E., Alpar, B., Borrero, J. C., Altinok, Y., Imamura, F., Tinti, S., Ersoy, S., Kuran, U., Pamukcu, S. and Kanoglu, U. (2001). Field surveys and modeling of the 1999 Izmit tsunami. ITS 2001 Proceedings, Session 4, number 4–6.
    Yamaguchi, S., Yanagisawa, M., Kawabe, S., Tatsuoka, F., & Nihei, Y. (2013). Evaluation of the stability of various types of coastal dyke against over-flowing Tsunami current. In G. Gottardi, D. Cazzuffi, H. I. Ling, J. Han, & F. Tatsuoka (Eds.), Design and Practice of Geosynthetic-Reinforced Soil Structures (pp. 572-581). (Design and Practice of Geosynthetic-Reinforced Soil Structures). DEStech Publications Inc.
    Yamaguchi, S., Yanagisawa, M., Kawabe, S., Tatsuoka, F., & Nihei, Y. (2013, January). Evaluation of the stability of various types of coastal dyke against over-flowing tsunami current. In International Symposium on Design and Practice of Geosynthetic-Reinforced Soil Structures and Joint Sessions with 26th Italian National Conference on Geosynthetics (pp. 572-581). DEStech Publications Inc.
    Yeh, H., & Sato, S. (2016). Tsunami effects on buildings and coastal structures. Journal of Disaster Research, 11(4), 662-669.
    Yokoyama, I. (1987). A scenario of the 1883 Krakatau tsunami, J. Volcanol. Geotherm. Res., 34(1–2), 123–132, doi:10.1016/0377-0273(87)90097-7.
    Yu, J., Cruz, A. M., Piatyszek, E., Lesbats, M., Tardy, A., Hokugo, A., & Tatano, H. (2017). A survey of impact on industrial parks caused by the 2011 Great East Japan earthquake and tsunami. Journal of Loss Prevention in the Process Industries, 50, 317-324.

    下載圖示 校內:2024-10-31公開
    校外:2024-10-31公開
    QR CODE