簡易檢索 / 詳目顯示

研究生: 尤昱勳
Yu, Yu-Hsun
論文名稱: SiO2-ZnO混合粉末在不同高度成長之薄膜其退火螢光光譜之研究
A PL study of annealing effect on ZnO films grown by SiO2-ZnO powder mixture at various growth heights
指導教授: 田興龍
Tien, Hsing-Lung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 42
中文關鍵詞: 氧化鋅退火高度二氧化矽光激發螢光光譜
外文關鍵詞: ZnO, SiO2, height, photoluminescence, PL, annealing
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用射頻濺鍍法在氬氣壓力10-2torr的環境下,以重量百分比混合分別為0%、1%、3%、6%之二氧化矽與氧化鋅所混合粉末濺鍍至矽基板上而形成薄膜,之後再透過23K低溫的光激發螢光光譜(photoluminescence;PL)來觀察出WR=1%之混合所成長出的薄膜具有最佳之PL譜線。而後再固定WR=1%的靶材來進行不同高度濺鍍薄膜,在成長高度分別為30mm、40mm、50mm、60mm、70mm、80mm下成長樣品,接著再以不同溫度(900℃、1000℃、1100℃、1150℃)進行退火處理,並由PL光譜分析發現在1150℃下退火產生的缺陷最多。
    接著固定1150℃來進行各成長高度之樣品不同退火時間的改變,發現成長高度較高所成長之樣品品質較好,其PL VB光譜裡的黃光(~595nm)與橘光(~635nm)分別歸咎於氧空缺與氧間隙這兩個缺陷。並且發現當樣品缺陷越多時,樣品內的A0X越容易解離成受體與激子,並造成自由電子與受體之複合的強度增加。

    In this study, using the RF sputtering method in an environment of argon gas pressure of 10-2torr, percent by weight mixed 0%, 1%, 3%, 6% SiO2, and ZnO mixed powder sputtering on silicon substrate and the formation of film, and then through the light of the 23K low temperature photoluminescence (photoluminescence; the PL) to observe WR = 1% of the mixed film grew out of the best PL spectrum. Then fixed WR = 1% of the target at different heights sputtering film, a high degree of growth, respectively 30mm, 40mm, 50mm, 60mm, 70mm, 80mm, under the growth of the sample, and then annealing in different temperatures (900℃, 1000℃, 1100℃, 1150℃), and the PL spectra showed that the the most defects produced in 1150℃ annealing.

    Then fixed 1150℃ to different annealing time and change the height of the samples of the various growth, we found that growth of the samples are better quality in the higher altitude, its PL the VB spectrum of yellow and orange (~595nm) light (~ 635nm), respectively attributed to two defects which are oxygen vacancies and oxygen interstitial. And found that when the sample defects more, the sample within the A0X more easily dissociated into the acceptor and exciton, and cause an increase the intensity of free electrons and acceptor complex.

    目錄 致謝 I 摘要 II 目錄 IV 圖目錄 VI 第一章 前言 1 第二章 理論 3 2-1 氧化鋅之發光原理 3 I. 激子 3 II. 中性受體束縛激子 4 III. 施體-受體對 5 IV. 自由電子與受體能階之輻合 6 V. 深層施體或受體發光 7 2-2 光激發螢光光譜 8 2-3磁控濺鍍原理 9 I. 電漿濺鍍 9 II. DC直流偏壓電漿濺鍍 9 III. RF射頻電漿濺鍍 11 第三章 樣品與實驗裝置 13 3-1 樣品備制 13 3-2 樣品退火(anneal) 15 3-3 低溫PL光譜系統 16 第四章 實驗結果與討論 17 4-1 混合的比例 17 4-2 退火溫度之影響 21 4-3 各高度下1150℃退火不同時間之光譜圖 27 I. VB光譜圖之分析 34 II. UV光譜分析 37 第五章 結論 39 參考文獻 41

    參考文獻
    [1] K.Hummer, Phys. Status Solidi B, Vol.56, 249(1973)
    [2] S.Cho, J.Ma, Y.Kim, Y.Sun G.K.L.Wang, and J.B. Ketterson, ”Photoluminscence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn”, Appl. Phys. Lett. Vol.75, No.18,2716 (1999)
    [3] Seung Yoon Ryu,Sung Hyun Kim,Chang Su Kim,Sungjin Jo,Jun Yeob Lee, Current Applied Physics Volume 12, Issue 5, September 2012, Pages 1378–1380
    [4] Seung Yoon Ryu,Sung Hyun Kim,Chang Su Kim,Sungjin Jo,Jun Yeob Lee, Current Applied Physics Volume 12, Issue 5, September 2012, Pages 1378–1380
    [5] Kim, Sang-Hoon; Hwang, eoung-Yeon; Kim, Jong-Hwan; Kim, Young-Hwan; Kang, Dong-Hun; Lee, Sang-Keuk; Han, Jin-Woo; Ok, Chul-Hol; Seo, Dae-Shik; Kim, Eung-Sang; molecular crystals and liquid crystals Volume: 475 Pages: 23-32
    [6] M.Kawasaki, A. Ohtomo, H. Koinuma, Z. K. Tang, P. Yu, G. K. L. Wang, B. P. Zhang, and Y. Segawa, Mater. Sci. Eng. , B56, 239 (1998)
    [7] H.Nanto, T.Minami, and S. Takata, Phys. “ Photoluminescence in sputtered ZnO thin film” Status Solodi A 65, K131, 1981。
    [8] J.Hu and R.G.Gordon,”Textured aluminum-doped zinc oxide thin films from stmospheric pressure chemical-vapor deposition” J. Appl. phys. Vol. 84, 3912, 1998。
    [9] Y.Chen,D.M.Bagnall,H.J.Koh,K.T.Park,K.Hiraga,Z.Zhu, and T.Yao,「Plasma assiated molecular beam epitaxy of ZnO on c-plane sapphire:Growth and characterization」J.Appl.phys.Vol.84,3912,1998
    [10] 白木靖寬、吉田真史,「薄膜工程學」,全華科技,2006。
    [11] 大泊 嚴,「圖解奈米技術」,全華科技,2003。
    [12] Haiping He, Yuxia Wang, and Youming Zou “Photoluminescence property of ZnO-SiO2 composites synthesized by sol-gel method”, Appl. Phys. 36, 2003。
    [13] “Synthesis of ZnO flowers and their photoluminescence properties” ; Changle Wu, Xueliang Qiao *, Langli Luo, Haijun Li; Materials Research Bulletin 43 (2008) 1883–1891
    [14] J. Chen, Z. C. Feng, P. L. Ying, M. J. Li, B. Han, C. Li, Phys. Chem. Chem. Phys. 6 (2004) 4473.
    [15] ”Photoluminescence of hydrothermally epitaxied ZnO films” A.Y.L. Sima, G.K.L. Goha,, S. Tripathy a, D. Andeenb, F.F. Lange b; Electrochimica Acta 52 (2007) 2933–2937
    [16] H. F. Liu, S. J. Chua, G. X. Hu, H. Gong, and N. Xiang; J. Appl. Phys. 102, 043530 (2007)
    [17] Xiang Liu, Xiaohua Wu, Hui Cao, and R. P. H. Chang; J. Appl. Phys. 95, 3141 (2004)
    [18] R.B.M.Cross1,M.M.De Souza and E.M.Sankara Narayanan; “A low temperature combination method for the production of ZnO nanowires” Nanotechnology 16 (2005) 2188–2192
    [19] S. A. Studenikin, Nickolay Golego, and Michael Cocivera; J. Appl. Phys. 84, 2287 (1998)
    [20] Xing, G. Z.; Yao, B; Cong, C. X. ;Yang, T. ; Xie, Y. P. ;Li, B. H. ; Shen, D. Z. ; ournal of alloys and compounds, Vol. 457, Issue: 1-2, Pages: 36-41。
    [21] Hadis Morkoc and Umit,”Zinc Oxide”,Wiley-VCH, P 177。
    [22] Ming-Kwei LEE and Hwai-Fu TU; Japanese Journal of Applied Physics Vol. 47, No. 2, 2008, pp. 980–982

    下載圖示 校內:2017-08-29公開
    校外:2017-08-29公開
    QR CODE