簡易檢索 / 詳目顯示

研究生: 陳宗信
Chen, Tsung-Hsin
論文名稱: 運用誤差指數異質變異數模型、狀態轉換指數異質變異數模型及混合模型在史坦普爾500指數與指數期貨價格和波動性的預測能力與效率性分析
The Analysis of Prediction Power and Efficiency for the S&P 500 Index and Index Futures Price and Volatility Based on EC-EGARCH, Regime-Switching EGARCH and Hybrid Model
指導教授: 李宏志
Li, Hung-chih
賴秀卿
Lai, Syou-ching
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融研究所
Graduate Institute of Finance
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 71
中文關鍵詞: 誤差指數異質變異數模型狀態轉換指史坦普爾500 指數
外文關鍵詞: EC-EGARCH, S&P 500, Regime-Switching EGARCH
相關次數: 點閱:51下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是比較誤差指數異質變異數模型(EC-EGARCH)、狀態轉換指數異質變異數模型(RS-EGARCH)以及將兩個原始模型結合遺傳基因演算法(hybrid model)在價格和波動性的預測能力。由於指數異質變異數模型(EGARCH)考慮了資訊不對稱的效果,所以本篇論文將使用指數異質變異數模型(EGARCH)作為條件變異數的方程式。
    此篇論文結合了傳統的計量模型與遺傳基因演算法(GA),希望藉此來檢視是否有助於改善在價格與波動的預測能力。這在以往文獻中,有Neely和Weller (2002)發現可提高對匯率波動的預測能力、Lai和Li(2006)發現可提高對每股盈餘的預測能力。
    本研究所使用的資料為每年第四季十分鐘的史坦普爾500指數與史坦普爾500指數期貨,樣本期間則從1986年到2007年。在利用平均絕對誤差百分比(Mean Absolute Percentage Error, MAPE)、平均絕對誤差(Mean Absolute Error, MAE)、配對檢定(Paired t Test)及費雪真實檢定(Fisher Exact Test)等檢定法評估四種模型的預測績效之後,我們發現結合遺傳基因演算法的模型相對於傳統的計量模型,對價格和波動性都具有較好的預測能力。

    This study is to investigate the effectiveness of various price and volatility forecast models including Error Correction EGARCH model (EC-EGARCH), Regime-Switching EGARCH model (RS-EGARCH), and hybrid models by combining Genetic Algorithm (GA) with EC-EGARCH (EC-EGARCHGA) and RS-EGARCH (RS-EGARCHGA). Since EGARCH rather than GARCH considers information asymmetry, EGARCH is used as conditional variance model in this study.
    Hybrid models by combining EC-EGARCH and RS-EGARCH with Genetic Algorithm (GA) are used in this study to see whether one of artificial intelligence, GA, can help improve forecast ability in price level and volatility since it has been supported by Neely and Weller (2002) in predicting the volatility and Lai and Li (2006) in predicting earning per share.
    In this thesis, 10-minute S&P 500 index and index futures are used and the sample period spreads from January 1986 to December 2007. Because yearly 10-minut interval data is hard to converge when EC-EGARCH or RS-EGARCH model is used, we only use the fourth quarter data in each year. Based on Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Paired t Test and Fisher Exact Test, we conclude that two hybrid models, EC-EGARCHGA and RS-EGARCHGA, perform better relative to their corresponding ordinary econometric models in price and volatility forecasts.

    Abstract (Chinese) III Abstract IV Acknowledgement V Content VI List of Tables VIII CHAPTER 1 Introduction 1 1.1 Motivation 1 1.2 Purpose of the Research 2 1.3 Structure of the Research 4 1.4 The Contributions of this Study 4 CHAPTER 2 Literature Review 6 2.1 Introduction of S&P 500 Index and Index Futures 6 2.2 Relative Studies about Error Correction model and GARCH model 8 2.3 Relative Studies about Regime-Switching Model 9 2.4 Relative Studies about Genetic Algorithm 12 CHAPTER 3 Data and Methodology 14 3.1 Unit Root Test 15 3.2 Cointegration Test 16 3.3 Length of Lag 17 3.4 Error Correction Model 18 3.5 Bivariate Exponential GARCH (EGARCH) Model 19 3.6 Markov Regime-Switching Model 23 3.7 EC-EGARCH and RS-EGARCH with Genetic Algorithm 26 3.8 Tests of Performance Among the Chosen Models 28 CHAPTER 4 Empirical Results 30 4.1 Data Collection 30 4.2 Stationary Test for S&P 500 Index and Index Futures Data 31 4.3 Cointegration Test 34 4.4 Length of Lag 37 4.5 The Bivariate EC-EGARCH Model 39 4.6 Predictive Power for S&P 500 Index and Index Futures 40 CHAPTER 5 Conclusions and Suggestions 43 5.1 Conclusions 43 5.2 Suggestions 45 References 46 Appendix 51

    Allen, F. and Karjalainen, R. (1999). Using Genetic Algorithms to Find Technical Trading Rules. Journal of Financial Economics, 51, 245~271.

    Ane, T. and Ureche-Rangau, L. (2006). Stock market dynamics in a regime-switching asymmetric power GARCH model. International Review of Financial Analysis, 15, 109– 129.

    Bauer, A.J. (1994). Genetic Algorithms and Investment Strategies, John Wiley & Sons, NY.

    Berndt, E.K., Hall, B.H. and Hausman, J.A. (1974). Estimation inference in nonlinear structural model. Annuals of Economic and Social Measurement, 4, 653-665.

    Bollen, N.P.B., Gray, S.F. and Whaley, R.E. (2000). Regime switching in foreign exchange rates : Evidence from currency option prices. Journal of Financial Economics, 94, 239-276.

    Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327.

    Brooks, C. (2002). Introductory econometrics for finance (Cambridge
    University Press).

    Chatrath, A., Chaudhry, M. and Christie-David, R. (1999). Price discovery in strategically linked markets: The TED spread and constituents. Journal of Derivatives, 6, 77-87.

    Chuang, C.C. (2003). International information transmissions between stock index futures and spot markets: The case of futures contracts related to Taiwan index. Journal of Management Sciences, 19, 51-78.

    Dickey, D.A. and Fuller, W.A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistics Association, 74, 427-431.

    Engle, R. F. and B. S. Yoo., (1987). Forecasting and Testing in Cointegrated System. Journal of Econometrics, 35, 143-159.

    Engle, R.F. and Granger, C.W.J. (1987). Co-integration and an Error Correction : representation, estimation and testing. Econometrica, 55, 251-276.

    Engle, R.F. and Ng, V.K. (1993). Measuring and testing the impact of news on volatility. Journal of Finance, 48, 1749-1778.

    Friedman, B.M. and Laibson, D.I. (1989). Economic implications of extraordinary movements in stock prices. Brookings Papers on Economic Activity, 2, 137-189.

    Ghosh, A. (1993). Cointegration and error correction models: intertemporal causality between index and futures prices. The Journal of Futures Markets, 13, 193-198.

    Goldberg, D.E. (1989). Genetic Algorithm in Search, Optimization and Machine Learning. Addison-Wesley Publishing Co.

    Goldberg, D. E. and Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms I, Morgan Kaufmann Publishers, 69-93.

    Granger, C.W.J. and Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2, 111–120.

    Granger, C.W.J. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14, 227-238.

    Gray, S.F. (1996). Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42, 27-62.

    Hamilton, J.D. (1988). Rational expectations econometric analysis of changes in regime: An investigation of the term structure of interest rates. Journal of Economic Dynamics and Control, 12, 385-423.
    Hamilton, J.D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57, 357- 384.

    Hamilton, J.D. (1990). Analysis of time series subject to changes in regime. Journal of Econometrics, 45, 39-70.

    Hamilton, J.D. and Susmel, R. (1994). Autoregressive conditional heteroscedasticity and changes in regime. Journal of Econometrics, 64, 307-333.

    Hamilton, J.D. (1994). Time series analysis (Princeton University Press, Princeton, N J).

    Hansen, P.R. and Lunde, A. (2005). A forecast comparison of volatility models: Does anything beat GARCH(1,1)? Journal of Applied Econometrics, 20, 873-889.

    Harris, L. (1989). The October 1987 S&P 500 Stock-Futures Basis. Journal of Finance, 44, 77-99.

    Holland, J. (1975). Adaptation in Natural and Artificial System.

    Holland, J. (1992). Genetic algorithms. Scientific American, 267, 66-72.

    Kawaller, I.G., Koch, P.D. and Koch, T.W. (1993). Intraday market behavior and the extent of feedback between S&P 500 futures prices and the S&P 500 index. Journal of Financial Research, 14, 107-121.

    Klaassen, F. (2002). Improving GARCH volatility forecasts with regime-switching GARCH. Empirical Economics, 27, 363-394.

    Korczak, J.J. (2001). Portfolio design and simulation using evolution based strategy : University of Worclaw, Poland.

    Koutmos, G. and Tucker, M. (1996). Temporal relationships and
    dynamics interactions between spot and futures stock markets. Journal of
    Futures Markets, 16, no.1, 55-69.
    Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by the means of natural selection. The MIT Press, Cambridge, Massachussets.
    Lai, S.C. and Li, H.C. (2006). The predictive power of quarterly earnings per share based on time series and artificial intelligence model. Applied Financial Economics, 16, 1325-1388.

    Li, H., Mathur, I., Schwarz, T.V. and Szakmary, A.C. (1994). Dynamic efficiency in the treasury bill and Eurodollar futures markets and implications for the TED spread. Review of Futures Markets, 13 No.1, 259-300.

    Li, Jin and Tsang, P.K.E. (1999). Improving technical analysis prediction - An application of genetic programming : University of Essex.

    Lien, D. and Lou, X. (1994). Multiperiod hedging in the presence of conditional heteroscedasticity. Journal of Futures Markets, 14, 927-955.

    Lien, D. and Tse, Y.K. (2000). Some recent developments in futures hedging. Working Paper, University of Texas at San Antonio.

    Neely, C., Weller, P. and Ditmar, R. (1997). Is technical analysis in the foreign exchange market profitable? A genetic programming approach. Journal of Financial and Quantitative Analysis, 32, 405-26.

    Neely, C.J. and Weller, P.A. (2002). Predicting exchange rate volatility: genetic programming versus GARCH and riskmetrics. The Federal Reserve Bank of St. Louis.

    Nelson, D.B. (1991). Conditional heteroskedasticity in asset returns : A new approach. Econometrica, 59, 2347-370.

    Phillips, PCB., P. Perron (1988). Testing for a unit root in time series regressions. Biometrika, 65, 335-346.

    Tse, Y. (1999). Price discovery and volatility spillovers in the DJIA index and futures markets. Journal of Futures Market, 19, 911-930.

    Whitley, D., Starkweather, T. and Bogart, C. (1990). Genetic algorithm and neural networks: optimizing connections and connectivity, Parallel Computing, 14, 280–311.
    Yang, J., Bessler, D.A. and Leatham, D.J. (2001). Asset storability and price discovery in commodity futures markets: A new look. Journal of Futures Markets, 21, 279-300.

    Zhang, G., Hu, M.Y., Patuwo B.E. and Indro D.C. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European Journal of Operational Research, 116, 16-32.

    Zhong, M., Darrat, A.F. and Otero, R. (2004). Price discovery and volatility spillovers in index futures markets: Some evidence from Mexico. Journal of Banking & Finance, 28, 3037-3054.

    下載圖示 校內:2011-08-05公開
    校外:2011-08-05公開
    QR CODE