| 研究生: |
黃捷思 Huang, Chieh-Szu |
|---|---|
| 論文名稱: |
無稀土及無氟化物紅光螢光粉之合成及第一原理綜合探討 Non-Rare Earth and Fluoride-Free Red Emitting Phosphor: A combined Experimental and Ab Initio Study |
| 指導教授: |
黃正亮
Huang, Cheng-Laing |
| 共同指導教授: |
林士剛
Lin, Shih-kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | Mg2TiO4:Mn4+ 、紅光螢光粉 、光致螢光 、第一原理計算 |
| 外文關鍵詞: | Mg2TiO4:Mn4+, red emitting phosphor, photoluminescence, ab-initio calculation, thin film |
| 相關次數: | 點閱:96 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
紅光螢光粉扮演著仿太陽光LED當中,暖色系的重要角色。然而,紅光的發光中心常是使用對環境有害的稀土元素,例如Eu2+。近年來發現使用Mn4+發光中心可以取代稀土元素,達到發出暖紅光的效果,但是使用Mn4+的母體材料大多受限於氟化物,例如K2TiF6,容易在製程中衍生許多的污染。因此本文的研究方向就是使用Mn4+作為發光中心且使用無氟的母體材料,且提出以第一原理的角度來了解螢光粉與敏化材料之間的關係。基於密度泛函理論,從最基礎的電子結構了解Mg2TiO4: Mn4+螢光粉的各種電子特徵。使用晶體內不同離子距離的結合能,判斷Mg2TiO4逆尖晶石結構的排列,判斷在現實中是隨機排列的16d位置之確定離子分佈,是第一個提出能量最低的Mg2TiO4模型。從能帶變化的角度,可以看出不同參雜濃度的Mn4+對於整體晶格的影響。能態密度可以看出來,Mg2TiO4: Mn4+內各種不同離子佔據的能量大小,再多放入一個元素作為敏化材料,從能態密度的不同重疊方式,選出了”鈮”為最有機會增強Mg2TiO4: Mn4+發光特性的敏化材料。最後,使用固態燒結法合成螢光粉,成功的製備出截至目前發表過,發光強度最強的Mg2TiO4: Mn4+非稀土非氟化物螢光粉,其光致螢光強度達未參雜敏化材料之243%。此研究提出了成功且新穎的方法來了解螢光粉的光學特性,進而設計出理想的產品。
Red light phosphor is the key component for stimulating natural sunlight LEDs. Recent years, Mn4+ luminescence centers are commonly used to substitute environmentally hazardous rare-earth dopants. However, the choice of matrix materials is usually fluoride compound, e.g. K2TiF6, which derivate contaminate issues on silicon industry. In this paper, the ecofriendly “rare-earth-free” and “flouoride-free” red light luminance material, Mg2TiO4 (MTO) with the luminescent center of Mn4+ (MTO:Mn), is investigated. The atomistic models were constructed using ab initio calculations based on density functional theory. The density of states of MTO:Mn with varies potential sensitizers reveal that the best candidate for sensitizer is niobium (Nb). In addition, phosphors were fabricated via solid state sintering. X-ray diffraction spectrum shows no meta-stable phase and photoluminescence spectrum indicates the intensity of light is around 243% after sensitization. This report successfully proposes a novel method to understand optoelectronic properties of phosphors and in turn obtain desirable products. In addition, Mg2TiO4 thin films were as well discussed here. Fabricated by either sol-gel or radio frequency sputtering, annealed at various temperatures and characterized using photoluminescence spectroscopy. Essential physical and optoelectronic properties of the Mg2TiO4 luminance material as well as its optimal processing conditions were comprehensively reported.
1. Nakamura, S., T. Mukai, and M. Senoh, Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes. Applied Physics Letters, 1994. 64(13): p. 1687-1689.
2. Schubert, E.F. and J.K. Kim, Solid-state light sources getting smart. Science, 2005. 308(5726): p. 1274-1278.
3. Kim, H.-s., et al., Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proceedings of the National Academy of Sciences, 2011. 108(25): p. 10072-10077.
4. Dai, Q., et al., Ligand-passivated Eu: Y2O3 nanocrystals as a phosphor for white light emitting diodes. Journal of the American Chemical Society, 2011. 133(39): p. 15475-15486.
5. Kitai, A., Luminescent materials and applications. Vol. 25. 2008: John Wiley & Sons.
6. Park, W.B., et al., Combinatorial chemistry of oxynitride phosphors and discovery of a novel phosphor for use in light emitting diodes, Ca 1.5 Ba 0.5 Si 5 N 6 O 3: Eu 2+. Journal of Materials Chemistry C, 2013. 1(9): p. 1832-1839.
7. Yen, W.M. and H. Yamamoto, Phosphor handbook. 2006: CRC press.
8. Li, J., et al., Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy-derived ammonometallates. Chemistry of materials, 2007. 19(15): p. 3592-3594.
9. Piao, X., et al., Characterization and luminescence properties of Sr2Si5N8: Eu2+ phosphor for white light-emitting-diode illumination. Applied physics letters, 2006. 88(16): p. 161908-161908.
10. Zeuner, M., F. Hintze, and W. Schnick, Low temperature precursor route for highly efficient spherically shaped LED-phosphors M2Si5N8: Eu2+ (M= Eu, Sr, Ba). Chemistry of materials, 2008. 21(2): p. 336-342.
11. Ye, T., et al., Sol–gel preparation of efficient red phosphor Mg 2 TiO 4: Mn 4+ and XAFS investigation on the substitution of Mn 4+ for Ti 4+. Journal of Materials Chemistry C, 2013. 1(28): p. 4327-4333.
12. Qiu, Z., et al., Effectively enhancing blue excitation of red phosphor Mg 2 TiO 4: Mn 4+ by Bi 3+ sensitization. Journal of Luminescence, 2015. 158: p. 130-135.
13. Medić, M.M., et al., Deep-Red Emitting Mn4+ Doped Mg2TiO4 Nanoparticles. The Journal of Physical Chemistry C, 2014. 119(1): p. 724-730.
14. Stade, J., D. Hahn, and R. Dittmann, New aspects of the luminescence of magnesiumtitanate part II: Activation with manganese. Journal of Luminescence, 1974. 8(4): p. 318-325.
15. Ho, Y.D., C.H. Su, and C.L. Huang, Intense Red Photoluminescence Emission of Sol–Gel‐Derived Nanocrystalline Mg2TiO4 Thin Films. Journal of the American Ceramic Society, 2014. 97(2): p. 358-360.
16. Bhuyan, R., et al., Enhanced densification and microwave dielectric properties of Mg 2 TiO 4 ceramics added with CeO 2 nanoparticles. Materials Science and Engineering: B, 2013. 178(7): p. 471-476.
17. Bhuyan, R., et al., Effect of annealing and atmosphere on the structure and optical properties of Mg2TiO4 thin films obtained by the radio frequency magnetron sputtering method. Journal of Experimental Nanoscience, 2013. 8(3): p. 371-381.
18. Zhu, H., et al., Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nature communications, 2014. 5.
19. Goebel, O., Rerefinement of K2 [TiF6]. Acta Crystallographica Section C: Crystal Structure Communications, 2000. 56(5): p. 521-522.
20. Paulusz, A., Efficient Mn (IV) emission in fluorine coordination. Journal of The Electrochemical Society, 1973. 120(7): p. 942-947.
21. Huang, C.L. and J.Y. Chen, Low‐Loss Microwave Dielectric Ceramics Using (Mg1− xMnx) 2TiO4 (x= 0.02–0.1) Solid Solution. Journal of the American Ceramic Society, 2009. 92(3): p. 675-678.
22. Ravichandran, D., et al., Fabrication of Y 3 Al 5 O 12: Eu thin films and powders for field emission display applications. Journal of Luminescence, 1997. 71(4): p. 291-297.
23. Henderson, B. and G.F. Imbusch, Optical spectroscopy of inorganic solids. Vol. 44. 2006: Oxford University Press.
24. Middlemost, E.A., Naming materials in the magma/igneous rock system. Earth-Science Reviews, 1994. 37(3): p. 215-224.
25. Huang, C.L. and C.E. Ho, Microwave Dielectric Properties of (Mg1− xNix) 2TiO4 (x= 0.02–0.1) Ceramics. International Journal of Applied Ceramic Technology, 2010. 7(s1).
26. Capelle, K., A bird's-eye view of density-functional theory. Brazilian Journal of Physics, 2006. 36(4A): p. 1318-1343.
27. Marder, M.P., Condensed matter physics. 2010: John Wiley & Sons.
28. Cuevas, J.C., Introduction to Density Functional Theory. Universität Karlsruhe, Germany, 2010.
29. Argaman, N. and G. Makov, Density functional theory: An introduction. American Journal of Physics, 2000. 68(1): p. 69-79.
30. Lukas, H., S.G. Fries, and B. Sundman, Computational Thermodynamics: The Calphad Method. 2007: Cambridge University Press. 324.
31. Kresse, G. and J. Furhmuller, Software VASP, Vienna (1999); G. Kresse, J. Hafner. Phys. Rev. B, 1993. 47: p. R558.
32. Kresse, G. and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996. 54(16): p. 11169.
33. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Physical review letters, 1996. 77(18): p. 3865.
34. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953.
35. Kresse, G. and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 1994. 6(40): p. 8245.
36. Monkhorst, H.J. and J.D. Pack, Special points for Brillouin-zone integrations. Physical Review B, 1976. 13(12): p. 5188.
37. Tsai, P.-c., W.-D. Hsu, and S.-k. Lin, Atomistic structure and ab initio electrochemical properties of Li4Ti5O12 defect spinel for Li ion batteries. Journal of The Electrochemical Society, 2014. 161(3): p. A439-A444.
38. Singh, A.K., et al., Synthesis, Characterization and DC Conduction Mechanism in Inverse Spinel Compound (Mg2TiO4). Int J Curr Eng Technol, 2014. 4: p. 399-404.
39. Uheda, K., et al., Luminescence properties of a red phosphor, CaAlSiN3: Eu2+, for white light-emitting diodes. Electrochemical and Solid-State Letters, 2006. 9(4): p. H22-H25.
40. Golubović, A. and M. Radović, The growth of Mg2TiO4 single crystals using a four-mirror furnace. Journal of the Serbian Chemical Society, 2011. 76(11): p. 1561-1566.
41. Kominami, H., et al., Synthesis and luminescence properties of Mg‐Ti‐O: Eu red‐emitting phosphors. physica status solidi (c), 2006. 3(8): p. 2758-2761.
42. Wang, L., T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA+ U framework. Physical Review B, 2006. 73(19): p. 195107.
43. Jahn, H.A. and E. Teller. Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1937. The Royal Society.
44. Silva, M., et al., Stability studies on undoped and doped Mg 2 TiO 4, obtained by the polymeric precursor method. Journal of thermal analysis and calorimetry, 2005. 79(2): p. 421-424.
45. Bennett, H. and J. Porteus, Relation between surface roughness and specular reflectance at normal incidence. JOSA, 1961. 51(2): p. 123-129.
45. [ICDD-PDF#25-1157 International Center for Diffraction Data
46. [ICDD-PDF #06-0494 International Center for Diffraction Data
47. G. Kimmel, J. Zabicky, JCPDS-ICDD 42, 238 (2000)
校內:2021-07-01公開