簡易檢索 / 詳目顯示

研究生: 陳健中
Chen, Jian-Jhong
論文名稱: 奈米結構應用於氮化鎵與磷化鋁鎵銦系列發光二極體之研製
Investigation and Fabrication of GaN- and AlGaInP-Based Light-Emitting Diodes Applying Nanostructures
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 133
中文關鍵詞: 氮化鎵磷化鋁鎵銦發光二極體奈米結構
外文關鍵詞: GaN, AlGaInP, Light-Emitting Diodes, Nanostructures
相關次數: 點閱:80下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目標為應用奈米結構來發展高效率的氮化鎵與磷化鋁鎵銦系列發光二極體,此研究所使用的奈米結構包括電子發射多重量子井、奈米圖案化藍寶石基板、二氧化矽微米柱陣列、光子晶體與奈米網狀氧化鋅。
    電子發射多重量子井結構在氮化鎵發光二極體中除了可以作為電子發射層外,也能作為預應變層。當電子發射多重量子井的週期從0對增加到8對時,順向偏壓隨之降低,同時,多重量子井的應力也跟著減少,使得漏電流減少與人體放電模式下的抗靜電能力增強,因此光輸出強度提升32%,除此之外,波長紅移與電流誘致波長藍移現象也能獲得改善。當電子發射多重量子井維持在8對的條件下,量子位障層的厚度為18.5 nm時可獲得最佳的消耗功率和光輸出特性。
    我們成功地利用奈米球微影術搭配乾蝕刻技術製作出奈米圖案化藍寶石基板。相較於使用微米圖案化藍寶石基板來成長氮化鎵發光二極體,藉由使用奈米圖案化藍寶石基板可提升8%的光輸出功率,同時,磊晶品質、電特性、接面溫度和光輸出特性都能有效地改善,然而奈米圖案化藍寶石基板結構的深寬比大小將會影響這些元件特性。
    相較於使用微米圖案化藍寶石基板來成長氮化鎵發光二極體,藉由使用二氧化矽微米柱陣列可增強磊晶層的側向成長,有效提升磊晶品質和光輸出特性,除此之外,可以進一步地利用氧化物緩衝蝕刻液移除二氧化矽微米柱陣列,而形成空氣微米孔洞陣列,因此光輸出功率可提升5%,接著再利用氫氧化鈉溶液將空氣微米孔洞陣列蝕刻成倒金字塔的形狀後,光輸出功率可提升8%。
    在此利用具量產能力的奈米球微影術成功地製作出光子晶體氮化鎵發光二極體。相較於傳統發光二極體,光子晶體可使發光二極體的光輸出功率提升15%,然而發光二極體的波長是否位於光子能隙將會影響發光二極體的光輸出特性。
    藉由使用奈米球微影術,我們製作出奈米網狀氧化鋅於磷化鋁鎵銦發光二極體上,並可使光輸出功率提升15%,此改善原因來自於奈米網狀氧化鋅可有效散射被侷限於晶片內部的光到外界,除此之外,由於奈米網狀氧化鋅的折射率位於p型磷化鎵窗戶層和空氣之間,可有效抑制Fresnel反射損失。

    The main purpose of this dissertation is to develop high efficiencies of GaN- and AlGaInP-based light-emitting diodes (LEDs) by applying nanostructures, including electron emitter multiple-quantum well (EE-MQW) structures, nano-patterned sapphire substrates (NPSS), SiO2 microrod array on sapphire substrate, photonic crystal (PhC) structures, and nano-mesh ZnO layers.
    The function of EE-MQW structures could be not only an electron emitter but also a prestrain layer for GaN-based LEDs. With the period of EE-MQW structure increases from 0 to 8 periods, the forward voltage reduces. Besides, the strain of MQW reduces, and it results in the reduced leakage current and the enhanced electrostatic discharge (ESD) endurance ability. Thus, the luminance intensity of LED with 8-period EE-MQW structure increases by 32% compared with the conventional LED at the injection current of 20 mA. The other optical properties, including the spectral redshift and current-induced blueshift range, could be more improved with the period of EE-MQW structure increases. Then, when the period of EE-MQW structure was kept at 8 periods, both the power consumption and light-output characteristic were optimal at 18.5 nm quantum barrier (QB) thickness of EE-MQW structure.
    NPSS was successfully demonstrated by using a combination of nanosphere lithography and dry etching technique. By introducing NPSS, the output power of GaN-based LED grown on patterned sapphire substrate (PSS) could increase by 8% when the pattern size of PSS reduces from micro- to nano-scale. For the detailed investigation of NPSS, the crystalline quality, electrical properties, junction temperature, and light-output characteristics of LED could be effectively improved by using NPSS technique, but depended on the aspect ratio of NPSS.
    The single growth technique by using SiO2 microrod array directly deposited on sapphire substrate provides the epitaxial lateral overgrowth (ELOG) of the epitaxial GaN films. Compared with LED grown on PSS, the crystalline quality and light-output characteristic could be more effectively improved by using SiO2 microrod array. For the further improvement in light extraction, SiO2 microrod array was first removed by buffer oxide etching (BOE) to form the air microhole array. Then, NaOH was used to etch the air microhole array again to form the inverted pyramid shape. Compared LED grown with SiO2 microrod array, the output power of LED increases 5% and 8.5% after BOE and NaOH wet-etching process at the injection current of 20 mA, respectively.
    Nanosphere lithography as a simple and economic method was utilized to fabricate PhC structures on the p-GaN layers of GaN-based LEDs. The output power of PhC LED was 15% higher than that of the conventional LED at the injection current of 20 mA. The optical properties of PhC LEDs were related to the fact that the PhC effect was only performed when the emitting wavelength of PhC LED was located inside the photonic bandgap (PBG).
    Nano-mesh ZnO layers were fabricated on the top of the p-GaP window layers of AlGaInP-based LEDs by using nanosphere lithography. Compared with the conventional LED, a 15% enhancement in the output power of LED with nano-mesh ZnO layer could be attributed to the fact that the nano-mesh ZnO layer effectively scatters or redirects the guided light inside an LED chip to find escape cones. Besides, the nano-mesh ZnO layer serves as an intermediate refractive index layer between the p-GaP window layer and air could effectively suppress Fresnel reflection loss.

    Abstract (in Chinese) ........................................................................................................... i Abstract (in English) .......................................................................................................... iii Acknowledgement ............................................................................................................... v Contents.............................................................................................................................. vi Table Captions .................................................................................................................. viii Figure Captions .................................................................................................................. ix Chapter 1 Introduction .................................................................................................... 1 1.1 Background ............................................................................................................ 1 1.2 Organization of this dissertation............................................................................. 3 Chapter 2 Epitaxy and Characterization Instruments ................................................. 5 2.1 Metal-organic chemical vapor deposition system.................................................. 5 2.1.1 Importance of MOCVD system .................................................................... 5 2.1.2 MOCVD apparatus........................................................................................ 6 2.1.3 Mechanism of MOCVD reaction .................................................................. 7 2.2 Characterization instruments.................................................................................. 7 2.2.1 Electro-static discharge testing...................................................................... 8 2.2.2 Measurement of junction temperature........................................................... 9 Chapter 3 GaN LEDs With Electron Emitter MQW Structures ............................... 13 3.1 Carrier recombination at MQW active region...................................................... 13 3.2 Experimental details............................................................................................. 14 3.3 Period effect of EE-MQW structure..................................................................... 16 3.3.1 Strain analysis of MQW structures ............................................................. 16 3.3.2 Electrical properties of LEDs...................................................................... 17 3.3.3 Optical properties of LEDs ......................................................................... 19 3.4 Quantum barrier thickness effect of EE-MQW structure..................................... 20 3.4.1 Strain analysis of MQW structures ............................................................. 20 3.4.2 Electrical properties of LEDs...................................................................... 20 3.4.3 Optical properties of LEDs ......................................................................... 21 Chapter 4 GaN LEDs Grown on Nano-Patterned Sapphire Substrates ................... 37 4.1 Nitride growth techniques .................................................................................... 37 4.2 LEDs grown on nano-patterned sapphire substrates ............................................ 39 4.2.1 Experimental details.................................................................................... 40 4.2.2 Characteristics of GaN epilayers................................................................. 41 4.2.3 Electrical properties of LEDs...................................................................... 43 4.2.4 Optical properties of LEDs ......................................................................... 44 4.3 LEDs grown with SiO2 microrod array................................................................ 46 4.3.1 Experimental details.................................................................................... 46 4.3.2 Characteristics of GaN epilayers................................................................. 47 4.3.3 Electrical properties of LEDs...................................................................... 48 4.3.4 Optical properties of LEDs ......................................................................... 48 4.4 LEDs grown with surrounding SiO2 microrod array ........................................... 49 4.4.1 Experimental details.................................................................................... 49 4.4.2 Characteristics of GaN epilayers................................................................. 50 4.4.3 Electrical and optical properties of LEDs ................................................... 51 Chapter 5 Photonic Crystal GaN LEDs ....................................................................... 79 5.1 Photonic crystal .................................................................................................... 79 5.2 Nanolithography for photonic crystal structures.................................................. 80 5.3 Experimental details............................................................................................. 80 5.4 Photonic band diagram of PhC structures ............................................................ 82 5.5 Electrical and optical properties of LEDs ............................................................ 83 Chapter 6 AlGaInP LEDs With Nano-Mesh ZnO Layers.......................................... 95 6.1 Light extraction of AlGaInP LEDs....................................................................... 95 6.2 Experimental details............................................................................................. 96 6.3 Electrical properties of LEDs............................................................................... 97 6.4 Optical properties of LEDs .................................................................................. 98 Chapter 7 Conclusions and Future Prospects.............................................................111 7.1 Conclusions .........................................................................................................111 7.2 Future Prospects ..................................................................................................114 References .........................................................................................................................115 Publication List................................................................................................................ 130 Vita................................................................................................................................... 133

    [1] H. J. Round, “A note on carborundum,” Electrical World, vol. 19, pp. 309–312, 1907.
    [2] G. Destriau, “Scintillations of zinc sulfides with alpha-rays,” J. Chimie Physique, vol. 33, pp.587–625, 1936.
    [3] H. Welker, “On new semiconducting compounds,” Zeitschrift fur Naturforschung, vol. 7a, pp. 744–749, 1952.
    [4] H. Welker, “On new semiconducting compounds II,” Zeitschrift fur Naturforschung, vol. 8a, pp. 248–251, 1953.
    [5] Jr. N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, pp. 82–83, 1962.
    [6] W. O. Groves, A. H. Herzog, and M. G. Craford, “The effect of nitrogen doping on GaAs1-xPx electroluminescent diodes,” Appl. Phys. Lett., vol. 19, pp. 184–186, 1971.
    [7] W. O. Groves, and A. S. Epstein, “Epitaxial deposition of III-V compounds containing isoelectronic impurities,” U.S. Patent 4,001,056, January 4, 1977.
    [8] R. A. Logan, H. G. White, and W. Wiegmann, “Efficient green electroluminescent junctions in GaP,” Sol. Stat. Electron., vol. 14, pp. 55–70, 1971.
    [9] Zh. I. Alferov, V. M. Andre, D. Z. Garbuzov, and Rumyantsev, “Radiative characteristics of InP-GaInPAs laser heterostructures,” Sov. Phys. Semicond., vol. 9, pp. 305–310, 1975.
    [10] J. Nishizawa and K. Suto, “Minority-carrier lifetime measurements of efficient GaAlAs p-n heterojunctions,” J. Appl. Phys., vol. 48, pp. 3484–3495, 1977.
    [11] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, “Room-temperature cw operation of AlGaInP double-heterosturcture visible lasers,” Electron. Lett., vol. 21, pp. 931–932, 1985.
    [12] K. Itaya, M. Ishikawa, and Y. Uematsu, “636 nm room temperature cw operation by heterobarrier blocking structure InGaAlP laser diodes,” Electron. Lett., vol. 26, pp. 839–840, 1990.
    [13] K. H. Huang and T. P. Chen, “Light-emitting diode structure,” U.S. Patent 5,661,742, August 26, 1997.
    [14] H. Sugawara, K. Itaya, M. Ishikawa and G. Hatakoshi, “High-efficiency InGaAlP visible light-emitting diodes,” Jpn. J. Appl. Phys., vol. 31, pp. 2446–2451, 1992.
    [15] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol.57, pp. 2937–2939, 1990.
    [16] H. Sugawara, M. Ishikawa, N. Yoshihiro, Y. Nishikawa, and S. Naritsuka, “Semiconductor light emitting device,” U.S. Patent 5,048,035, September 10, 1991.
    [17] S. J. Chang, C. S. Chang, Y. K. Su, P. T. Chang, Y. R. Wu, K. H. Huang and T. P. Chen, “AlGaInP multiquantum well light-emitting diodes,” IEE Proc.-Optoelectron., vol. 144, pp. 405–409, 1997.
    [18] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1–x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839–2841, 1994.
    [19] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, Member, IEEE, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 310–320, 2002.
    [20] H. P. Maruska, and J. J. Tietjen, “The preparation and properties of vapour-deposited single-crystal-line GaN,” Appl. Phys. Lett., vol. 15, p. 327, 1969.
    [21] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, “Electroluminescence in GaN,” J. Luminescence, vol. 4, pp. 63–66, 1971.
    [22] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112–L2114, 1989.
    [23] S. Nakamura, N. Iwasa, and M. Senoh, “Method of manufacturing p-type compound semiconductor,” U.S. Patent 5,306,662, April 26, 1994.
    [24] S. Nakamura and T. Mukai, “High-quality InGaN films grown on GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L457–L459, 1992.
    [25] P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, “Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates,” J. Appl. Phys., vol. 75, pp. 4515–4519, 1994.
    [26] S. Tanaka, M. Takeuchi and Y. Aoyagi, “Anti-surfactant in III-nitride epitaxy –quantum dot formation and dislocation termination–,” Jpn. J. Appl. Phys., vol. 39, pp. L831–L834, 2000.
    [27] O. Moriwaki, T. Someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2361–2363, 2000.
    [28] S. Nakamura, “Status of GaN LEDs and lasers for solid-state lighting and displays,” OIDA Solid-State Lighting Workshop, Albuquerque, 2002.
    [29] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high-efficiency GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 66, pp. 1249–1251, 1995.
    [30] G. B. Stringfellow, Semiconductors and Semimetals. New York: Academic Press, 1985.
    [31] H. C. Casey and M. B. Panish, Heterostructure lasers: part B, materials and operating characteristics. New York: Academic Press, 1978.
    [32] G. B. Stringfellow, Organometallic vapor phase epitaxy: theory and practice. San Diego, CA: Academic Press, 1989.
    [33] J. E. Vinson and J. J. Liou, “Electrostatic discharge in semiconductor devices: an overview,” Proc. IEEE, vol. 86, pp. 399–418, 1998.
    [34] L. R. Avery, “Device level testing,” 1993 EOS/ESD Tutorial Notes, pp. F-1–F-11, 1993.
    [35] L. V. Roozendaal, A. Amerasekera, P. Bos, W. Baelde, F. Bontekoe, P. Kersten, E. Korma, P. Rommers, P. Krys, U. Weber, and P. Ashby, “Standard ESD testing of integrated circuits,” in Proc. EOS/ESD Symp., vol. EOS-12, pp. 119–130, 1990.
    [36] A. Olney, ”A combined socketed and nonsocketed CDM test approach for eliminating real-world CDM failures,” in Proc. EOS/ESD Symp., vol. EOS-18, pp. 62–75, 1996.
    [37] Y. Xi and E. F. Schubert, “Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward-voltage method,” Appl. Phys. Lett., vol. 85, pp. 2163–2165, 2004.
    [38] E. F. Schubert, Light Emitting Diodes. Cambridge, U.K.: Cambridge Univ. Press, 2003.
    [39] P. W. M. Blom, C. Smith, J. E. M. Haverkort, and J. H. Wolter, “Carrier capture into a semiconductor quantum well,” Phys. Rev. B, vol. 47, pp. 2072–2081, 1993.
    [40] S. A. Levetas and M. J. Godfrey, “Calculation of capture of carriers by quantum wells,” Phys. Rev. B, vol. 59, pp. 10202–10207, 1999.
    [41] Y. T. Rebane, Y. G. Shreter, B. S. Yavich, V. E. Bougrov, S. I. Stepanov, and W. N. Wang, “Light emitting diode with charge asymmetric resonance tunneling,” phys. stat. sol. (a), vol. 180, pp. 121–126, 2000.
    [42] J. K. Sheu, G. C. Chi, and M. J. Jou, “Enhanced output power in an InGaN–GaN multiquantum-well light-emitting diode with an InGaN current-spreading layer,” IEEE Photon. Technol. Lett., vol. 13, pp. 1164–1166, 2001.
    [43] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu, and Y. H. Liaw, “High brightness green light emitting diodes with charge asymmetric resonance tunneling structure,” IEEE Electron Device Lett., vol. 23, pp. 130–132, 2002.
    [44] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, J. K. Sheu, and J. F. Chen, ”InGaN/GaN tunnel-injection blue light-emitting diodes,” IEEE Trans. on Electron Devices, vol. 49, pp. 1093–1095, 2002.
    [45] S. J. Chang, S. C. Wei, Y. K. Su, and W. C. Lai, “Nitride-based dual-stage MQW LEDs,” J. Electrochem. Soc., vol. 154, pp. H871–H874, 2007.
    [46] C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, “Prestrained effect on the emission properties of InGaN/GaN quantum-well structures,” Appl. Phys. Lett., vol. 89, pp. 051913-1–3, 2006.
    [47] C. F. Huang, C. Y. Chen, C. F. Lu, and C. C. Yang, “Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth,” Appl. Phys. Lett., vol. 91, pp. 051121-1–3, 2007.
    [48] S. J. Leem, Y. C. Shin, K. C. Kim, E. H. Kim, Y. M. Sung, Y. Moon, S. M. Hwang, and T. G. Kim, “The effect of the low-mole InGaN structure and InGaN/GaN strained layer superlattices on optical performance of multiple quantum well active layers,” J. Crystal Growth, vol. 311, pp. 103–106, 2008.
    [49] C. F. Lu, C. F. Huang, Y. S. Chen, and C. C. Yang, “Dependence of spectral behavior in an InGaN/GaN quantum-well light-emitting diode on the prestrained barrier thickness,” J. Appl. Phys., vol. 104, pp. 043108-1–3, 2008.
    [50] S. Q. Zhou, M. F. Wu, L. N. Hou, S. D. Yao, H. J. Ma, R. Nie, Y. Z. Tong, Z. J. Yang, T. J. Yu, and G. Y. Zhang, “An approach to determine the chemical composition in InGaN/GaN multiple quantum wells,” J. Crystal Growth, vol. 263, pp. 35–39, 2004.
    [51] M. F. Wu, A. Vantomme, H. Pattyn, G. Langouche, Q. Yang, and Q. Wang, “X-ray-diffraction study of quasipseudomorphic ErSi1.7 layers formed by channeled ion-beam synthesis, J. Appl. Phys., vol. 80, pp. 5713–5717, 1996.
    [52] K. Hiramatsu, T. Detchprohm, and I. Akasaki, “Relaxation mechanism of thermal stresses in the heterostructure of GaN grown on sapphire by vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 32, pp. 1528–1533, 1993.
    [53] T. Kozawa, T. Kachi, H. Kano, and H. Nagase, N. Koide, and K. Manabe, “Thermal stress in GaN epitaxial layers grown on sapphire substrates,” J. Appl. Phys., vol. 77, pp. 4389–4392, 1995.
    [54] J. M. Shah, Y.-L. Li, Th. Gessmann, and E. F. Schubert, “Experimental analysis and theoretical model for anomalously high ideality factors (n>2.0) in AlGaN/GaN p-n junction diodes,” J. Appl. Phys., vol. 94, pp. 2627–2630, 2003.
    [55] G. M. Wu, K. Y. Cheng, C. H. Fang, T. E. Nee, J. C. Wang, N. C. Chen, Y. J. Hu, J. C. Lee, and Y. F. Wu, “Effect of excitonic interactions on abnormal luminescence behaviour of InGaN/GaN light-emitting diodes with electron tunneling layer,” Jpn. J. Appl. Phys., vol. 47, pp. 679–681, 2008.
    [56] D. Zhu, J. Xu, A. N. Noemaun, J. K. Kim, E. F. Schubert, M. H. Crawford, and D. D. Koleske, “The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes,” Appl. Phys. Lett., vol. 94, pp. 081113-1–3, 2009.
    [57] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,”Appl. Phys. Lett. vol. 48, pp. 353–355, 1986.
    [58] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, “Effects of an AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1−xAlxN (0<x<0.4) films grown on sapphire substrate by MOVPE,” J. Crystal Growth, vol. 98, pp. 209–219, 1989.
    [59] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, and K. Oki, “Growth mechanism of GaN grown on sapphire with AlN buffer layer by MOVPE,” J. Crystal Growth, vol. 115, pp. 628–633, 1991.
    [60] S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys., vol. 30, pp. L1705–L1707, 1991.
    [61] F. A. Ponce, “Defects and interfaces in GaN epitaxy,” Mater. Res. Soc. Bull., vol. 22, pp. 51–57, 1997.
    [62] B-Y. Tsaur, R. W. McClelland, J. C. C. Fan, R. P. Gale, J. P. Salerno, B. A. Vojak, and C. O. Bozler, “Low-dislocation-density GaAs epilayers grown on Ge-coated Si substrates by means of lateral epitaxial overgrowth,” Appl. Phys. Lett., vol. 41, pp. 347–349, 1982.
    [63] D. Pribat, B. Gerard, M. Dupuy, and P. Legagneux, “High quality GaAs on Si by conformal growth,” Appl. Phys. Lett., vol. 60, pp. 2144–2146, 1992.
    [64] K. Kato, T. Kusunoki, C. Takenaka, T. Tanahashi, and K. Nakajima, “Reduction of dislocations in InGaAs layer on GaAs using epitaxial lateral overgrowth,” J. Crystal Growth, vol. 115, pp. 174–179, 1991.
    [65] O. Parillaud, E. Gil-Lafon, B. Gerard, P. Etienne, and D. Pribat, “High quality InP on Si by conformal growth,” Appl. Phys. Lett., vol. 68, pp. 2654–2656, 1996.
    [66] Y. Kato, S. Kitamura, K. Hiramatsu, and N. Sawaki, “Selective growth of wurtzite GaN and AlxGa1−xN on GaN/sapphire substrates by metalorganic vapor phase epitaxy,” J. Crystal Growth, vol. 144, pp. 133–140, 1994.
    [67] D. Kapolnek, S. Keller, R. Vetury, R. D. Underwood, P. Kozodoy, S. P. DenBaars, and U. K. Mishra, “Anisotropic epitaxial lateral growth in GaN selective area epitaxy,” Appl. Phys. Lett., vol. 71, pp. 1204–1206, 1997.
    [68] A. Sakai, H. Sunakawa, and A. Usui, “Defect structure in selectively grown GaN films with low threading dislocation density,” Appl. Phys. Lett., vol. 71, pp. 2259–2261, 1997.
    [69] T. S. Zheleva, O. H. Nam, M. D. Bremser, and R. F. Davis, “Dislocation density reduction via lateral epitaxy in selectively grown GaN structures,” Appl. Phys. Lett., vol. 71, pp. 2472–2474, 1997.
    [70] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, and T. Maeda, “Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),” J. Crystal Growth, vol. 221, pp. 316–326, 2000.
    [71] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, and T. Taguchi, “High output power InGaN ultraviolet light emitting diodes fabricated on patterned substrates using metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys., vol. 40, pp. L583–L585, 2001.
    [72] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, “InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode,” Jpn. J. Appl. Phys., vol. 41, pp. L1431–L1433, 2002.
    [73] Z. H. Feng, Y. D. Qi, Z. D. Lu, K. M. Lau, “GaN-based blue light-emitting diodes grown and fabricated on patterned sapphire substrates by metalorganic vapor-phase epitaxy,” J. Crystal Growth, vol. 272, pp. 327–332, 2004.
    [74] I. Niki, Y. Narukawa, D. Morita, S. Sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamada, and T. Mukai, “White LEDs for solid state lighting,” Proc. SPIE, vol. 5187, pp. 1–9, 2004.
    [75] Z. H. Feng and K. M. Lau, “Enhanced luminescence from GaN-based blue LEDs grown on grooved sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, pp. 1812–1814, 2005.
    [76] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN–GaN LEDs grown on patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 17, pp. 288–290, 2005.
    [77] W. K. Wang, D. S. Wuu, S. H. Lin, P. Han, R. H. Horng, T. C. Hsu, D. T. C. Huo, M. J. Jou, Y. H. Yu, and A. Lin, “Efficiency improvement of near-ultraviolet InGaN LEDs using patterned sapphire substrates,” IEEE J. Quantum Electron., vol. 41, pp. 1403–1409, 2005.
    [78] W. K. Wang, D. S. Wuu, W. C. Shih, J. S. Fang, C. E. Lee, W. Y. Lin, P. Han, R. H. Horng, T. C. Hsu, T. C. Huo, M. J. Jou, A. Lin, and Y. H. Yu, “Near-ultraviolet InGaN/GaN light-emitting diodes grown on patterned sapphire substrates,” Jpn. J. Appl. Phys., vol. 44, pp. 2512–2515, 2005.
    [79] Y. J. Lee, T. C. Hsu, H. C. Kuo, S. C. Wang, Y. L. Yang, S. N. Yen, Y. T. Chu, Y. J. Shen, M. H. Hsieh, M. J. Jou, B. J. Lee, “Improvement in light-output efficiency of near-ultraviolet InGaN–GaN LEDs fabricated on stripe patterned sapphire substrates,” Mater. Sci. Eng. B, vol. 122, pp. 184–187, 2005.
    [80] W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett., vol. 88, pp. 181113-1–3, 2006.
    [81] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, “Ultra-high efficiency white light emitting diodes,” Jpn. J. Appl. Phys., Vol. 45, pp. L1084–L1086, 2006.
    [82] J. H. Lee, J. T. Oh, J. S. Park, J. W. Kim, Y. C. Kim, J. W. Lee, and H. K. Cho, “Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire,” phys. stat. sol. (c), vol. 3, pp. 2169–2173, 2006.
    [83] W. K. Wang, D. S. Wuu, S. H. Lin, S. Y. Huang, and R. H. Horng, “InGaN-based light-emitting diodes grown on grooved sapphire substrates,” phys. stat. sol. (c), vol. 3, pp. 2141–2144, 2006.
    [84] C. C. Wang, H. Ku, C. C. Liu, K. K. Chong, C. I Hung, Y. H. Wang, and M. P. Houng, “Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure,” Appl. Phys. Lett., vol. 91, pp. 121109-1–3, 2007.
    [85] R. H. Horng, W. K. Wang, S. C. Huang, S. Y. Huang, S. H. Lin, C. F. Lin, D. S. Wuu, “Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates,” J. Crystal Growth, vol. 298, pp. 219–222, 2007.
    [86] P. C. Tsai, R. W. Chuang, and Y. K. Su, “Lifetime tests and junction-temperature measurement of InGaN light-emitting diodes using patterned sapphire substrates,” J. Lightwave Technol., vol. 25, pp. 591–596, 2007.
    [87] J.-H. Lee, J.-T. Oh, S.-B. Choi, J.-G. Woo, S.-Y. Lee, and M.-B. Lee, “Extraction-efficiency enhancement of InGaN-based vertical LEDs on hemispherically patterned sapphire,” phys. stat. sol. (c), vol. 4, pp. 2806–2809, 2007.
    [88] E.-H. Park, J. Jang, S. Gupta, I. Ferguson, C.-H. Kim, S.-K. Jeon, and J.-S. Park, “Air-voids embedded high efficiency InGaN-light emitting diode,” Appl. Phys. Lett., vol. 93, pp. 191103-1–3, 2008.
    [89] J.-H. Lee, J.-T. Oh, S.-B. Choi, Y.-C. Kim, H.-I. Cho, and J.-H. Lee, “Enhancement of InGaN-based vertical LED with concavely patterned surface using patterned sapphire substrate,” IEEE Photon. Technol. Lett., vol. 20, pp. 345–347, 2008.
    [90] J.-H. Lee, J. T. Oh, Y. C. Kim, and J.-H. Lee, “Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire,” IEEE Photon. Technol. Lett., vol. 20, pp. 1563–1565, 2008.
    [91] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, “Fabrication of pyramidal patterned sapphire substrates for high-efficiency InGaN-based light emitting diodes,” J. Electrochem. Soc., vol. 153, pp. G765–G770, 2006.
    [92] Y. J. Lee, J. M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T. C. Lu, H. C. Kuo, and S. C. Wang, “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates,” IEEE Photon. Technol. Lett., vol. 18, pp. 1152–1154, 2006.
    [93] Y. J. Lee, H. C. Kuo, T. C. Lu, B. J. Su, and S. C. Wang, “Fabrication and characterization of GaN-based LEDs grown on chemical wet-etched patterned sapphire substrates,” J. Electrochem. Soc., vol. 153, pp. G1106–G1111, 2006.
    [94] Y. J. Lee, H. C. Kuo, T. C. Lu, S. C. Wang, K. W. Ng, K. M. Lau, Z. P. Yang, A. S. P. Chang, and S. Y. Lin, “Study of GaN-based light-emitting diodes grown on chemical wet-etching-patterned sapphire substrate with V-shaped pits roughening surfaces,” IEEE J. Lightwave Technol., vol. 26, pp. 1455–1463, 2008.
    [95] C. C. Pan, C. H. Hsieh, C. W. Lin, and J. I. Chyi, “Light output improvement of InGaN ultraviolet light-emitting diodes by using wet-etched stripe-patterned sapphire substrates,” J. Appl. Phys., vol. 102, pp. 084503-1–5, 2007.
    [96] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, “Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale,” J. Appl. Phys., vol. 103, pp. 014314-1–5, 2008.
    [97] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett., vol. 41, pp. 377–379, 1982.
    [98] J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A, vol. 13, pp. 1553–1558, 1995.
    [99] C. Haginoya, M. Ishibashi, and K. Koike, “Nanostructure array fabrication with a size-controllable natural lithography,” Appl. Phys. Lett., vol. 71, pp. 2934–2936, 1997.
    [100] S. Han, Z. Hao, J. Wang, and Y. Luo, “Controllable two-dimensional photonic crystal patterns fabricated by nanosphere lithography,” J. Vac. Sci. Technol. B, vol. 23, pp. 1585–1588, 2005.
    [101] C. L. Cheung, R. J. Nikolic, C. E. Reinhardt, and T. F. Wang, “Fabrication of nanopillars by nanosphere lithography,” Nanotechnology, vol. 17, pp. 1339–1343, 2006.
    [102] Y. B. Zheng, S. J. Wang, A. C. H. Huan, and Y. H. Wang, “Fabrication of tunable nanostructure arrays using ion-polishing-assisted nanosphere lithography,” J. Appl. Phys., vol. 99, pp. 034308-1–4, 2006.
    [103] H. W. Huang, H. C. Kuo, J. T. Chu, C. F. Lai, C. C. Kao, T. C. Lu, S. C. Wang, R. J. Tsai, C. C. Yu, C. F. Lin, “Nitride-based LEDs with nano-scale textured sidewalls using natural lithography,” Nanotechnology, vol. 17, pp. 2998–3001, 2006.
    [104] T. S. Kim, S. M. Kim, Y. H. Jang, and G. Y. Jung, “Increase of light extraction from GaN based light emitting diodes incorporating patterned structure by colloidal lithography,” Appl. Phys. Lett., vol. 91, pp. 171114-1–3, 2007.
    [105] H. Heinke, V. Kirchner, S. Einfeldt, and D. Hommel, “X-ray diffraction analysis of the defect structure in epitaxial GaN,” Appl. Phys. Lett., vol. 77, pp. 2145–2147, 2000.
    [106] R. Chierchia, T. Bottcher, H. Heike, S. Einfeldt, S. Figge, and D. Hommel, “Microstructure of heteroepitaxial GaN revealed by x-ray diffraction,” J. Appl. Phys., vol. 93, pp. 8918–8925, 2003.
    [107] X. Zhang, R. R. Li, P. D. Dapkus, and D. H. Rich, “Direct lateral epitaxy overgrowth of GaN on sapphire substrates based on a sparse GaN nucleation technique,” Appl. Phys. Lett., vol. 77, pp. 2213–2215, 2000.
    [108] H. S. Cheong, M. K. Yoo, H. G. Kim, S. J. Bae, C. S. Kim, C.-H. Hong, J. H. Baek, H. J. Kim, Y. M. Yu, and H. K. Cho, “Direct heteroepitaxial lateral overgrowth of GaN on stripe-patterned sapphire substrates with very thin SiO2 masks,” phys. stat. sol. (b), vol. 241, pp. 2763–2766, 2004.
    [109] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. Yu, H. C. Kuo, T. C. Lu, S. C.Wang, K. M. Lau, and S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template,” Appl. Phys. Lett., vol. 93, pp. 081108-1–3, 2008.
    [110] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2509–2062, 1987.
    [111] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, pp. 2486–2489, 1987.
    [112] J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals. Princeton: New York, 1995.
    [113] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett., vol. 78, pp. 3294–3297, 1997
    [114] J. D. Joannopoulos, "The almost-magical world of photonic crystals,” Braz. J. Phys., vol. 26, pp. 58–67, 1996.
    [115] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals,” Sol. Stat. Commun., vol. 102, pp. 165–173, 1997.
    [116] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett., vol. 75, pp. 1036–1038, 1999.
    [117] S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Rate-equation analysis of output efficiency and modulation rate of photonic-crystal light-emitting diodes,” IEEE J. Quantum Electron., vol. 36, pp. 1123–1130, 2000.
    [118] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science, vol. 308, pp. 1296–1298, 2005.
    [119] J. K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei, and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface,” Appl. Phys. Lett., vol. 88, p. 113505-1–3, 2006,
    [120] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C. H. Kuo, C. W. Kuo, and Y. K. Su, “High efficiency and improved ESD characteristics of GaN-based LEDs with naturally textured surface grown by MOCVD,” IEEE Photon. Technol. Lett., vol. 18, pp. 1213–1215, 2006.
    [121] C. H. Liu, R. W. Chuang, S. J. Chang, Y. K. Su, L. W. Wu, and C. C. Lin, “Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface,” Mater. Sci. Eng. B, vol. 112, pp. 10–13, 2004.
    [122] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-based LEDs with textured side-walls,” IEEE Photon. Technol. Lett., vol. 16, pp. 750–752, 2004.
    [123] C. C. Yang, R. H. Horng, C. E. Lee, W. Y. Lin, K. F. Pan, Y. Y. Su, and D. S.Wuu, “Improvement in extraction efficiency of GaN-based light emitting diodes with textured surface layer by natural lithography,” Jpn. J. Appl. Phys, vol. 44, pp. 2525–2507, 2005.
    [124] J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Plössl, F. Kühn, H. Zull, M. Winter, and V. Härle, “InGaN on SiC LEDs for high flux and high current applications,” phys. stat. sol. (a), vol. 194, pp. 399–402, 2002.
    [125] C. F. Lin, Z. J. Yang, B. H. Chin, J. H. Zheng, J. J. Dai, B. C. Shieh, and C. C. Chang, “Enhanced light output power in InGaN light-emitting diodes by fabricating inclined undercut structure,” J. Electrochem. Soc., vol. 153, pp. G1020–G1024, 2006.
    [126] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C. C. Yu, and C. F. Lin, “Light-output enhancement in a nitride-based light-emitting diode with 22º undercut sidewalls,” IEEE Photon. Technol. Lett., vol. 17, pp. 19–21, 2005.
    [127] Z. S. Zhang, B. Zhang, J. Xu, K. Xu, Z. J. Yang, Z. X. Qin, T. J. Yu, and D. P. Yu, “Effects of symmetry of GaN-based two-dimensional photonic crystal with quasicrystal lattices on enhancement of surface light extraction,” Appl. Phys. Lett., vol. 88, pp. 171103-1–3, 2006.
    [128] A. David, T. Fujii, E. Matioli, R. Sharma, S. Nakamura, S. P. DenBaars, and C. Weisbuch, “GaN light-emitting diodes with Archimedean lattice photonic crystals,” Appl. Phys. Lett., vol. 88, pp. 073510-1–3, 2006.
    [129] A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, C. Weisbuch, and H. Benisty, “Photonic crystal laser lift-off GaN light-emitting diodes,” Appl. Phys. Lett., vol. 88, pp. 133514-1–3, 2006.
    [130] A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, and C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Appl. Phys. Lett., vol. 88, pp. 061124-1–3, 2006.
    [131] T. Kim, P. O. Leisher, A. J. Danner, R. Wirth, K. Streubel, and K. D. Choquette, “Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED,” IEEE Photon. Technol. Lett., vol. 18, pp. 1876–1878, 2006.
    [132] J.-Y. Kim, M.-K. Kwon, K.-S. Lee, S.-J. Park, S. H. Kim and K.-D. Lee, “Enhanced light extraction from GaN-based green light-emitting diode with photonic crystal,” Appl. Phys. Lett., vol. 91, pp. 181109-1–3, 2007.
    [133] M.-K. Kwon, J.-Y. Kim, I.-K. Park, K. S. Kim, G.-Y. Jung, S.-J. Park, J. W. Kim, and Y. C. Kim, “Enhanced emission efficiency of GaN/InGaN multiple quantum well light-emitting diode with an embedded photonic crystal,” Appl. Phys. Lett., vol. 92, 251110-1–3, 2008.
    [134] K. McGroddy, A. David, E. Matioli, M. Iza, S. Nakamura, S. DenBaars, J. S. Speck, C. Weisbuch, and E. L. Hu, “Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes,” Appl. Phys. Lett., vol. 93, pp. 103502-1–3, 2008.
    [135] K. Bergenek, Ch. Wiesmann, H. Zull, R. Wirth, P. Sundgren, N. Linder, K. Streubel, and T. F. Krauss, “Directional light extraction from thin-film resonant cavity light-emitting diodes with a photonic crystal,” Appl. Phys. Lett., vol. 93, pp. 231109-1–3, 2008.
    [136] C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett., vol. 92, pp. 243118-1–3, 2008.
    [137] C. H. Lin, H. H. Yen, C. F. Lai, H. W. Huang, C. H. Chao, H. C. Kuo, T. C. Lu, S. C. Wang, and K. M. Leung, “Enhanced vertical extraction efficiency from a thin-film InGaN–GaN light-emitting diode using a 2-D photonic crystal and an omnidirectional reflector,” IEEE Photon. Technol. Lett., vol. 20, pp. 836–838, 2008.
    [138] K. Kim, J. Choi, J. B. Park, S. C. Jeon, J. S. Kim, and H. M. Lee, “Lattice constant effect of photonic crystals on the light output of blue light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 20, pp. 1455–1457, 2008.
    [139] H. K. Cho, S.-K. Kim, D. K. Bae, B.-C. Kang, J. S. Lee, and Y.-H. Lee, “Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes,” IEEE Photon. Technol. Lett., vol. 20, pp. 2096–2098, 2008.
    [140] C. F. Lai, H. C. Kuo, C. H. Chao, H. T. Hsueh, J.-F. T. Wang, W. Y. Yeh, J. Y. Chi, T. C. Lu, and S. C. Wang, “Azimuthal anisotropy of light extraction from photonic crystal light-emitting diodes,” phys. stat. sol. (c), vol. 5, pp. 2099–2101, 2008.
    [141] T. A. Truong, L. M. Campos, E. Matioli, I. Meinel, C. J. Hawker, C. Weisbuch, and P. M. Petroff, “Light extraction from GaN-based light emitting diode structures with a noninvasive two-dimensional photonic crystal,” Appl. Phys. Lett., vol. 94, pp. 023101-1–3, 2009.
    [142] C. E. Lee, C. F. Lai, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Nitride-based thin-film light-emitting diodes with photonic quasi-crystal surface,” IEEE Photon. Technol. Lett., vol. 21, pp. 331–333, 2009.
    [143] H. Ichikawa and T. Baba, “Efficiency enhancement in a light-emitting diode with a two-dimensional surface grating photonic crystal,” Appl. Phys. Lett., vol. 84, pp. 457–459, 2004.
    [144] J. Shakya, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Enhanced light extraction in III-nitride ultraviolet photonic crystal light-emitting diodes,” Appl. Phys. Lett., vol. 85, pp. 142–144, 2004.
    [145] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett., vol. 84, pp. 466–468, 2004.
    [146] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Appl. Phys. Lett., vol. 84, pp. 3885–3887, 2004.
    [147] J. Shakya, J. Y. Lin, and H. X. Jiang, “Time-resolved electroluminescence studies of III-nitride ultraviolet photonic-crystal light-emitting diodes,” Appl. Phys. Lett., vol. 85, pp. 2104–2106, 2004.
    [148] K. Orita, S. Tamura, T. Takizawa, T. Ueda, M. Yuri, S. Takigawa, and D. Ueda, “High-extraction-efficiency blue light-emitting diode using extended-pitch photonic crystal,” Jpn. J. Appl. Phys., vol. 43, pp. 5809–5813, 2004.
    [149] D.-H. Kim, C.-O Cho, Y.-G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, and Q-H. Park, “Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns,” Appl. Phys. Lett., vol. 87, pp. 203508-1–3, 2005.
    [150] H. K. Cho, J. Jang, J.-H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K.-D. Lee, S. H. Kim, K. Lee, S.-K. Kim, and Y.-H. Lee, “Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes,” Opt. Express, vol. 14, pp. 8654–8660, 2006.
    [151] K.-J. Byeon, S.-Y. Hwang, and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett., vol. 91, pp. 091106-1–3, 2007.
    [152] S. H. Kim, K.-D. Lee, J.-Y. Kim, M.-K. Kwon, and S.-J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology, vol. 18, pp. 055306-1–5, 2007.
    [153] B. S. Cheng, C. H. Chiu, K. J. Huang, C. F. Lai, H. C. Kuo, C. H. Lin, T. C. Lu, S. C. Wang and C. C. Yu, “Enhanced light extraction of InGaN-based green LEDs by nano-imprinted 2D photonic crystal pattern,” Semicond. Sci. Technol., vol. 23, pp. 055002-1–5, 2008.
    [154] R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, “Accurate theoretical analysis of photonic band-gap materials,” Phys. Rev. B, vol. 48, pp. 8434–8437, 1993.
    [155] T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys., vol. 95, pp. 2203–2216, 2004.
    [156] K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Sel. Topics Quantum Electron., vol. 8, pp. 321–332, 2002.
    [157] M. R. Krames, M. Ochiai-Holcomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I.-H. Tan, and P. Grillot, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365–2367, 1999.
    [158] H. Sugawara, K. Itaya, and G. Hatakoshi, “Hybrid-type InGaAlP/GaAs distributed bragg reflectors for InGaAlP light-emitting diodes,” Jpn. J. Appl. Phys., vol. 33, pp. 6195–6198, 1994.
    [159] S. W. Chiou, C. P. Lee, C. K. Huang, and C. W. Chen, “Wide-angle distributed Bragg reflectors for 590 nm amber AlGaInP light-emitting diodes,” J. Appl. Phys., vol. 87, pp. 2052–2054, 2000.
    [160] T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, “Omnidirectional reflective contacts for light-emitting diodes,” IEEE Electron Device Lett., vol. 24, pp. 683–685, 2003.
    [161] S. C. Hsu, D. S. Wuu, C. Y. Lee, J. Y. Su, and R. H. Horng, “High-efficiency 1-mm2 AlGaInP LEDs sandwiched by ITO omni-directional reflector and current-spreading layer,” IEEE Photon. Technol. Lett., vol. 19, pp. 492–494, 2007.
    [162] Y. J. Lee, H. C. Tseng, H. C. Kuo, S. C. Wang, C. W. Chang, T. C. Hsu, Y. L. Yang, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Improvement in light-output efficiency of AlGaInP LEDs fabricated on stripe patterned epitaxy,” IEEE Photon. Technol. Lett., vol. 17, pp. 2532–2534, 2005.
    [163] Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, M. J. Liou, C. W. Chang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “AlGaInP light-emitting diodes with stripe patterned omni-directional reflector,” Jpn. J. Appl. Phys., vol. 45, pp. 643–645, 2006.
    [164] Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, M. J. Liou, C. W. Chang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, High brightness AlGaInP-based light emitting diodes by adopting the stripe-patterned omni-directional reflector,” Semicond. Sci. Technol., vol. 21, pp. 184–189, 2006.
    [165] R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth, P. Kiesel, G. Borghs, G. H. Dohler, and P. Heremans, “40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography,” IEEE Trans. Electron Devices, vol. 47, pp. 1492–1498, 2000.
    [166] H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen, “Improvement of AlInP–AlGaInP MQW light-emitting diode by meshed contact layer,” IEEE Photon. Technol. Lett., vol. 14, pp. 1491–1493, 2002
    [167] H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, S. M. Chen, and W. L. Li, “Improvement of AlGaInP multiple-quantum-well light-emitting diodes by modification of ohmic contact layer,” Jpn J. Appl. Phys., vol. 43, pp. 1934–1936, 2004.
    [168] R. H. Horng, T. M. Wu, and D. S. Wuu, “Improved light extraction in AlGaInP-based LEDs using a roughened window layer,” J. Electrochem. Soc., vol. 155, pp. H710–H715, 2008.
    [169] C. Rooman, M. Kuijk, S. De Jonge, and P. Heremans, “High-efficiency AlGaInP thin-film LEDs using surface-texturing and waferbonding with conductive epoxy,” IEEE Photon. Technol. Lett., vol. 17, pp. 2649–2651, 2005.
    [170] Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, “Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency,” Mater. Sci. Eng. B, vol. 138 pp. 157–160, 2007.
    [171] J. M. Hwang, W. H. Hung, and H. L. Hwang, “Efficiency enhancement of light extraction in LED with a nano-porous GaP surface,” IEEE Photon. Technol. Lett., vol. 20, pp. 608–610, 2008.
    [172] Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett., vol. 17, pp. 2289–2291, 2005.
    [173] L. J. Yan, J. K. Sheu, W. C. Wen, T. F. Liao, M. J. Tsai, and C. S. Chang, “Improved light extraction efficiency in AlGaInP light-emitting diodes by applying a periodic texture on the surface,” IEEE Photon. Technol. Lett., vol. 20, pp. 1724–1726, 2008.
    [174] P. W. Huang and Y. C. S. Wu, “Improved performance of AlGaInP LEDs by a periodic GaP-dish mirror array,” IEEE Photon. Technol. Lett., vol. 21, pp. 1441–1443, 2009.
    [175] R. M. Perks, J. Kettle, G. M. Lalev, and S. Dimov, “Nanostructuring of an AlGaInP light emitting diode for surface plasmon enhanced emission of light output,” phys. stat. sol. (a), vol. 205, pp. 2061–2063, 2008.
    [176] K. Bergenek, Ch. Wiesmann, H. Zull, R. Wirth, P. Sundgren, N. Linder, K. Streubel, and T. F. Krauss, “Directional light extraction from thin-film resonant cavity light-emitting diodes with a photonic crystal,” Appl. Phys. Lett., vol. 93, pp. 231109-1–3, 2008.
    [177] C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett., vol. 20, pp. 428–430, 2008.

    下載圖示 校內:2013-08-25公開
    校外:2015-08-25公開
    QR CODE