| 研究生: |
林樺 Lin, Hwa |
|---|---|
| 論文名稱: |
車輛能效管理政策對達成臺灣新售車輛電動化目標之影響分析 Impact of Vehicle Fuel Economy Policy on the Achievement of Taiwan's New Vehicle Electrification Target |
| 指導教授: |
黃韻勳
Huang, Yun-Hsun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 車輛能效總量管理 、電動車滲透率 、系統動態模型 、政策情境模擬 、井到輪分析 |
| 外文關鍵詞: | Corporate Average Fuel Economy (CAFE), Electric vehicle penetration, System dynamics modeling, Policy scenario simulation, Well-to-Wheel (WTW) analysis |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應全球氣候變遷與能源轉型趨勢,我國已提出2050年淨零排放與運具電動化目標,本研究以我國車輛能效總量管理(Corporate Average Fuel Economy, CAFE)制度為核心,探討車輛能效政策工具對電動車滲透率之影響,並運用系統動態方法建構具政策評估功能之模擬模型。透過國際作法與文獻探討、制度邏輯解析,模型設計整合政策制定者、新售車輛市場、額度池、合規監管者等行為角色關聯,形成涵蓋能效合規、誘因配置與市場結構調整等互動關係的動態模型。同時納入「井到輪(Well-to-Wheel, WTW)」之能源與碳排估算模組,得以從燃料生命週期觀點量化不同政策組合的環境效果。
研究透過多重政策情境模擬,評估不同車輛能效政策工具設計下的目標達成度與產業適應性。模擬結果顯示,車輛能效政策工具對電動車導入具有顯著驅動效果,惟其成效高度依賴政策設計的結構與推動節奏;短期內透過單一政策工具設計雖可具備迅速推升電動車占比之驅動力,但過度達標將導致產業壓力與社會成本升高,不利於長期穩健轉型;獎勵乘數為初期推動關鍵,其退出時點與額度結存制度疊加,可能引發誘因延滯與技術調整遞延風險;燃油車輛能效提升雖具補充效果,但難以取代電動車之合規主力地位;WTW分析進一步指出,電動車減碳貢獻受電網碳排強度影響顯著,制度若導入實際排放導向之評估方式,將重塑車型合規結構與政策壓力分布,顯示未來需同步關注能源結構與制度邏輯間之一致性。
綜整研究結果,本研究驗證車輛能效制度設計對電動車推動具關鍵作用,未來制度調整與檢討建議納入政策工具間的非線性回饋與結構延遲特性進行考量,同時建議可強化對國際WTW方法趨勢與能源政策連動的考量,以確保車輛能效管理制度之韌性與長期政策效益。
In response to global climate change and energy transition goals, Taiwan has committed to achieving net-zero emissions by 2050 and promoting vehicle electrification. This study examines the role of Taiwan’s Corporate Average Fuel Economy (CAFE) mechanism in influencing electric vehicle (EV) penetration. A system dynamics-based simulation model was developed—drawing on international practices, literature review, and institutional logic—to evaluate policy effectiveness. The model incorporates key actors, including policymakers, automakers, credit systems, and regulators, capturing their dynamic interactions across compliance, incentives, and market structure. A Well-to-Wheel (WTW) module is integrated to assess environmental impacts from a life-cycle perspective.
Multi-scenario simulations reveal that vehicle energy efficiency policies significantly drive EV adoption, though their effectiveness is highly dependent on design structure and implementation pace. Even minor adjustments to single instruments can accelerate EV uptake in the short term; however, overachievement beyond policy targets may increase industrial pressure and social costs, compromising long-term transition stability. Incentive multipliers, while essential early on, may delay behavioral shifts when combined with credit banking mechanisms—highlighting the need to anticipate such dynamics in policy design. While improving internal combustion vehicle efficiency offers supplementary value, it cannot replace EVs as the core compliance pathway. WTW analysis shows that EV carbon reduction benefits are strongly tied to grid emission intensity. Using actual emissions for compliance would redistribute policy pressure, highlighting the need to align energy planning with regulatory design.
This study confirms the critical role of CAFE policy in promoting EV adoption, and recommends that future policy reviews incorporate the nonlinear feedbacks and structural delays inherent in policy tools, while focusing on WTW trends and energy policy integration to ensure the resilience and long-term effectiveness of vehicle efficiency management.
一、外文文獻
1.Abdullah, H. M., Gastli, A., Ben-Brahim, L., & Mohammed, S. O. (2022). Planning and optimizing electric-vehicle charging infrastructure through system dynamics. IEEE Access, 10, 17495-17514.
2.Álvarez, R., Zubelzu, S., Díaz G. & López A. (2015). Analysis of low carbon super credit policy efficiency in European Union greenhouse gas emissions. Energy, 82, 996-1010.
3.Benvenutti, L. M. M., Ribeiro, A. B., & Uriona, M. (2017). Long term diffusion dynamics of alternative fuel vehicles in Brazil. Journal of Cleaner Production, 164, 1571-1585.
4.Bezdek, R. & Wendling R. (2005). Fuel Efficiency and the Economy, American Scientist, 93, 198-198.
5.Bonilla, D.,. Bishop, J. D. K., Axon, C. J. & Banister, D. (2014). Innovation, the diesel engine and vehicle markets: Evidence from OECD engine patents. Transportation Research Part D: Transport and Environment, 27, 51-58.
6.Braz da Silva, M., & Moura, F. (2016). Electric vehicle diffusion in the Portuguese automobile market. Transportation Research Part D: Transport and Environment, 47, 208–224.
7.Casals, L. C., Martínez-Laserna, E., García, B. A., & Nieto, N. (2016). Sustainability analysis of the electric vehicle use in Europe for CO₂ emissions reduction. Journal of Cleaner Production, 127, 425-437.
8.Choi, W., & Song, H. H. (2018). Well-to-wheel greenhouse gas emissions of battery electric vehicles in countries dependent on the import of fuels through maritime transportation: A South Korean case study. Applied Energy, 230, 135-147.
9.Choi, W., Yoo, E., Seol, E., Kim, M., & Song, H. H. (2020). Greenhouse gas emissions of conventional and alternative vehicles: Predictions based on energy policy analysis in South Korea. Applied Energy, 265, 114754.
10.Deng, Y., Wang, Y., & Liu, X. (2024). Diffusion model to analyse the performance of electric vehicle policies: An evolutionary game simulation. Transportation Research Part D: Transport and Environment, 127, 104037.
11.Doucette, R. T., & McCulloch, M. D. (2011). Modeling the prospects of plug-in hybrid electric vehicles to reduce CO₂ emissions. Applied Energy, 88(7), 2315-2323.
12.Edwards, R., Hass, H., Larivé, J.-F., & Maas, H. (2013). Well-to-Tank report version 4.0: JEC well-to-wheels analysis: Well-to-Tank report – July 2013 (EUR 26041 EN). Joint Research Centre of the European Commission.
13.European Commission. (2019). The European Green Deal.
14.European Parliament and Council of the European Union. (2019, April 17). Regulation (EU) 2019/631: Setting CO₂ emission performance standards for new passenger cars and for new light commercial vehicles, and repealing Regulations (EC) No 443/2009 and (EU) No 510/2011.
15.European Parliament and Council of the European Union. (2021). Regulation (EU) 2021/1119: Establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’).
16.European Parliament and Council of the European Union. (2023). Regulation (EU) 2023/851: Amending Regulation (EU) 2019/631 as regards strengthening the CO₂ emission performance standards for new passenger cars and new light commercial vehicles in line with the Union’s increased climate ambition.
17.Forrester, J. W. (1961). Industrial dynamics. Cambridge, MA: MIT Press.
18.Goldberg, P. K. (1996). The effects of the corporate average fuel efficiency standards, National Bureau of Economic Research, Inc.
19.Graba, M., Mamala, J., Bieniek, A., Augustynowicz, A., Czernek, K., Krupińska, A., Włodarczak, S., & Ochowiak, M. (2023). Assessment of energy demand for PHEVs in year-round operating conditions. Energies, 16(14), 5571.
20.Gustafsson, M., Svensson, N., Eklund, M., & Fredriksson Möller, B. (2021). Well-to-wheel climate performance of gas and electric vehicles in Europe. Transportation Research Part D: Transport and Environment, 97, 102911.
21.Held, M., & Baumann, M. (2011). Assessment of the environmental impacts of electric vehicle concepts. In S. Schaltegger, M. Bennett, R. Burritt, & C. Jasch (Eds.), Towards life cycle sustainability management (pp. 535-546). Springer.
22.Helms, H., Pehnt, M., Lambrecht, U., & Liebich, A. (2010, May). Electric vehicle and plug-in hybrid energy efficiency and life cycle emissions. In 18th International Symposium on Transport and Air Pollution, Session 3, 113.
23.Howlett, M. (1991). Policy instruments, policy styles, and policy implementation: National approaches to theories of instrument choice. Policy Studies Journal, 19(2), 1-21.
24.International Council on Clean Transportation. (2007). Passenger vehicle greenhouse gas and fuel economy standards: A global update (Report No. 2007-06).
25.International Energy Agency. (2021). Net zero by 2050: A roadmap for the global energy sector.
26.Katsis, P., Papageorgiou, T. & Ntziachristos, L. (2016). A Study on Super Credits and their Impact on Fleet-Average Real-World CO2 Emissions. Energy and Environment, 277-291.
27.Ke, W., Zhang, S., He, X., Wu, Y., & Hao, J. (2017). Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress. Applied Energy, 188, 367-377.
28.Kong, D., Xia, Q., Xue, Y., & Zhao, X. (2020). Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective. Applied Energy, 266, 114887.
29.Lee, Y., Kim, C., & Shin, J. (2016). A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach. Applied energy, 184, 438-449.
30.Li, J., Jiao, J., & Tang, Y. (2019). An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network. Energy Policy, 129, 1-12.
31.Li, J., Nian, V., & Jiao, J. (2022). Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model. Applied Energy, 309, 118430.
32.Li, M., Zhang, X., & Li, G. (2016). A Comparative Assessment of Battery and Fuel Cell Electric Vehicles Using a Well-to-Wheel Analysis. Energy, 94, 693-704.
33.Li, S., Trappey, A. J. C., Trappey, C. V., Hsiao, C. T., & Ou, J. J. R. (2016). A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach. Applied Energy, 184, 438-449.
34.Liu, D., & Xiao, B. (2018). Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model. Energy Policy, 120, 8-23.
35.Liu, H., Zhao, J., Qing, T., Li, X., & Wang, Z. (2021). Energy consumption analysis of a parallel PHEV with different configurations based on a typical driving cycle. Energy Reports, 7, 254-265.
36.Liu, X., Reddi, K., Elgowainy, A., Lohse-Busch, H., Wang, M., & Rustagi, N. (2020). Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle. International Journal of Hydrogen Energy, 45(1), 972-983.
37.Lonan, E. S., & Ardi, R. (2020). Electric vehicle diffusion in the Indonesian automobile market: A system dynamics modelling. In 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 43-47). IEEE.
38.Lutsey, N. & Sperling, D. (2012). Regulatory adaptation: Accommodating electric vehicles in a petroleum world. Energy Policy, 45, 308-316.
39.Meadows, D. H., Meadows, D. L., Randers, J., & Behrens III, W. W. (1972). The limits to growth: A report for the Club of Rome’s project on the predicament of mankind. New York: Universe Books.
40.Mendoza, J. C. & Jiahan, C. A. O. (2020). Making the Local Work for the Global Best: A Comparative Study of Vehicle Efficiency Standards Implementation in China and Mexico. Sustainability Standards and Global Governance: Experiences of Emerging Economies. A. Negi, J. A. Pérez-Pineda and J. Blankenbach. Singapore, Springer Singapore, 187-199.
41.Michalek, J. J., Papalambros, P. Y. & Skerlos, S. J. (2005). A Study of Fuel Efficiency and Emission Policy Impact on Optimal Vehicle Design Decisions. Journal of Mechanical Design, 126(6), 1062-1070.
42.Moawad, A. & Rousseau, A. (2014). Impact of Electric Drive Vehicle Technologies on Fuel Efficiency to Support 2017-2025 CAFE Regulations. SAE International Journal of Alternative Powertrains, 3(2), 163-175.
43.Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles. Transportation Research Part D: Transport and Environment, 64, 5–14.
44.National Highway Traffic Safety Administration. (2022). Corporate Average Fuel Economy Standards for Model Years 2024-2026 Passenger Cars and Light Trucks.
45.National Highway Traffic Safety Administration. (2023). Corporate Average Fuel Economy Standards for Passenger Cars and Light Trucks for Model Years 2027-2032 and Fuel Efficiency Standards for Heavy-Duty Pickup Trucks and Vans for Model Years 2030-2035.
46.National Highway Traffic Safety Administration. (2024). Corporate Average Fuel Economy Standards for Passenger Cars and Light Trucks for Model Years 2027 and Beyond and Fuel Efficiency Standards for Heavy-Duty Pickup Trucks and Vans for Model Years 2030 and Beyond.
47.National Highway Traffic Safety Administration. (2024). Passenger automobile average fuel economy standards (49 CFR Part 531).
48.National Highway Traffic Safety Administration & Environmental Protection Agency. (2020). The Safer Affordable Fuel-Efficient (SAFE) Vehicles Rule for Model Years 2021-2026 Passenger Cars and Light Trucks.
49.Paltsev, S., Chen, Y. H. H., Karplus, V., Kishimoto, P. & Reilly, J. (2015). Impacts of CO2 Mandates for New Cars in the European Union.
50.Plotkin, S. E. (2009). Examining fuel economy and carbon standards for light vehicles. Energy Policy, 37(10), 3843-3853.
51.Plötz, P., Funke, S. Á., & Jochem, P. (2018). Empirical fuel consumption and CO₂ emissions of plug-in hybrid electric vehicles. Journal of Industrial Ecology, 22(4), 773-784.
52.Posada, F., Yang, Z., & Blumberg, K. (2018). New vehicle fuel economy and CO₂ emission standards emissions evaluation guide. International Council on Clean Transportation.
53.Pugh, A. L., & Richardson, G. P. (1981). Introduction to system dynamics modeling with DYNAMO. MIT Press.
54.Qudrat-Ullah, H., & Seong, B. S. (2010). How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energy Policy, 38(5), 2216-2224.
55.Rahman, M. M., Zhou, Y., Rogers, J., Chen, V., Sattler, M. & Hyun, K. (2021). A comparative assessment of CO2 emission between gasoline, electric, and hybrid vehicles: A Well-To-Wheel perspective using agent-based modeling. Journal of Cleaner Production, 321.
56.Sen, B., Noori, M. & Tatari, O. (2017). Will Corporate Average Fuel Economy (CAFE) Standard help? Modeling CAFE's impact on market share of electric vehicles. Energy Policy, 109, 279-287.
57.Senge, P. M. (1990). The fifth discipline: The art and practice of the learning organization. Doubleday/Currency.
58.Shiau, C.-S. N., Michalek, J. J. & Hendrickson, C. T. (2009). A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy. Transportation Research Part A: Policy and Practice, 43(9-10), 814-828.
59.Sheng, M., Sreenivasan, A. V., Sharp, B., & Du, B. (2021). Well-to-wheel analysis of greenhouse gas emissions and energy consumption for electric vehicles: A comparative study in Oceania. Energy Policy, 158, 112552.
60.Turan, Ö., & Yücel, G. (2014). Analyzing electric vehicle diffusion scenarios for Istanbul. Proceedings of the 32nd International Conference of the System Dynamics Society.
61.United Nations Framework Convention on Climate Change. (2021). Glasgow Climate Pact: Decision -/CP.26.
62.U.S. Environmental Protection Agency. (2021). Revised 2023 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions Standards.
63.U.S. Environmental Protection Agency. (2024). Multi-Pollutant Emissions Standards for Model Years 2027 and Later LightDuty and Medium-Duty Vehicles.
64.Ventana Systems, Inc. (1999). Vensim®: Simulation software for system dynamics modeling [Computer software]. Ventana Systems.
65.Wang, S., Zhao, F., Liu, Z. & Hao, H. (2018). Impacts of a super credit policy on electric vehicle penetration and compliance with China's Corporate Average Fuel Consumption regulation. Energy, 155, 746-762.
66.Woo, J. R., Choi, H., & Ahn, J. (2017). Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transportation Research Part D: Transport and Environment, 51, 340-350.
67.Yang, Z., & Bandivadekar, A. (2017). 2017 global update: Light-duty vehicle greenhouse gas and fuel economy standards. International Council on Clean Transportation.
68.Yu, J., Yang, P., Zhang, K., Wang, F., & Miao, L. (2018). Evaluating the effect of policies and the development of charging infrastructure on electric vehicle diffusion in China. Sustainability, 10(10), 3394.
69.Zhang, B., & Tay, F. E. H. (2017). An integrated approach using data mining and system dynamics to policy design: Effects of electric vehicle adoption on CO₂ emissions in Singapore. In P. Perner (Ed.), Advances in data mining. Applications and theoretical aspects (pp. 258-268). Springer.
70.Zhang, L., Zhao, Z., He, X., & Wang, G. (2018). Charge pricing model for electric vehicle charging infrastructure public-private partnership projects in China: A system dynamics analysis. Journal of Cleaner Production, 201, 315-324.
71.環境省. (2020). 自動車による排出量のバウンダリに係る論点について(資料2-2). 税制全体のグリーン化推進検討会 第2回.
二、中文文獻
1.工研院 (2015),104年度車輛能源效率管理策略執行與基準再提升之研究計畫(1/4),新竹縣,臺灣。
2.工研院 (2019),108年度車輛能源效率管理策略執行與基準研究計畫(1/4)年度執行報告,新竹縣,臺灣。
3.工研院 (2020),109年度車輛能源效率管理策略執行與基準研究計畫(2/4)年度執行報告,新竹縣,臺灣。
4.工研院 (2021),110年度車輛能源效率管理策略執行與基準研究計畫(3/4)年度執行報告,新竹縣,臺灣。
5.工研院 (2022),111年度車輛能源效率管理策略執行與基準研究計畫(4/4)年度執行報告,新竹縣,臺灣。
6.工研院 (2023),112年度車輛能源效率管理策略執行與基準研究計畫(1/4)年度執行報告,新竹縣,臺灣。
7.王晨晏 (2016),我國離岸風力發電政策工具的比較與環境及經濟效益評估(碩士論文)。國立臺北大學自然資源與環境管理研究所,新北市,臺灣。
8.洪紹平 (2016),電力資源組合適應性演化機制與應用-系統動態模擬之研究(博士論文)。國立臺北大學自然資源與環境管理研究所,新北市,臺灣。
9.國家市場監督管理總局與國家標準化管理委員會 (2019),GB/T 37340-2019 電動汽車能耗折算方法,中國。
10.張仲緯 (2021),以系統動態學架構預測電動機車需求與碳排放減少量(碩士論文)。國立臺北大學自然資源與環境管理研究所,新北市,臺灣。
11.許素貞 (2009),總額管控措施對臺灣醫院之影響與醫療資源配置比較研究(博士論文),國立成功大學資源工程學系,臺南市,臺灣。
12.曾郁升 (2022),以系統動力學評估臺灣再生能源發展與私人電動運具之減碳效益(碩士論文)。國立中山大學海洋環境及工程學系研究所,高雄市,臺灣。
13.黃冠庭 (2023),台灣2050淨零政策下推動低碳汽車之減碳與環境衝擊評估(碩士論文)。國立臺北科技大學環境工程與管理研究所,臺北市,臺灣。
14.楊朝仲、張良正、葉欣誠、陳泓憲、葉昭憲 (2009),系統動力學:思維與應用,五南圖書出版公司,臺北市,臺灣。
15.經濟部能源署 (2023),車輛油耗指南,臺北市,臺灣。
16.陳志寬 (2010),應用系統動態模式STELLA模擬台灣交通運輸部門溫室氣體與空氣污染物之整合減量效益(碩士論文)。國立臺北科技大學工程學院環境工程與管理研究所,臺北市,臺灣。
17.陳俊成 (2020),利用系統動態學建構電力產業差距模式探討台灣低碳轉型政策(博士論文)。國立中央大學企業管理學系,桃園市,臺灣。
18.蔡妙珊 (2005),系統思考與系統動態學之教學應用研究(碩士論文),國立臺灣師範大學科技應用與人力資源發展學系,臺北市,臺灣。
19.謝長宏 (1987),系統動態學--理論、方法與應用(三版),中興管理顧問公司,臺北市,臺灣。
20.蕭志同 (2004),台灣汽車產業發展:系統動態模式(博士論文)。國立交通大學管理科學系,新竹市,臺灣。
三、網站資料
1.Argonne National Laboratory. https://www.anl.gov/
2.European Commission (2022), Road transport: Reducing CO₂ emissions from vehicles. https://climate.ec.europa.eu/eu-action/transport-emissions/road-transport-reducing-co2-emissions-vehicles_en
3.ICCT (2023), Passenger vehicle fuel economy. https://theicct.org/chart-library-passenger-vehicle-fuel-economy
4.ICCT (2024), Light vehicles. https://theicct.org/sector/light-vehicles/
5.Joint Research Centre (2016), Well-to-Wheels analyses. European Commission. https://joint-research-centre.ec.europa.eu/welcome-jec-website/jec-activities/well-wheels-analyses_en
6.National Highway Traffic Safety Administration (2022), Corporate Average Fuel Economy. https://www.nhtsa.gov/laws-regulations/corporate-average-fuel-economy
7.U.S. Environmental Protection Agency (2023), Regulations for greenhouse gas emissions from passenger cars and trucks.
https://www.epa.gov/regulations-emissions-vehicles-and-engines/regulations-greenhouse-gas-emissions-passenger-cars-and
8.United States Code. Title 49—Transportation; Subtitle VI—Motor Vehicle and Driver Programs; Part C—Information, Standards, and Requirements; Chapter 329—Automobile Fuel Economy; Section 32912—Civil Penalties. https://www.law.cornell.edu/uscode/text/49/32912
9.中國工業與信息化部 , 國家市場監督管理總局, 國家標準化管理委員會 (2021),GB 19578-2021乘用車燃料消耗量限值。https://std.samr.gov.cn/gb/search/gbDetailed?id=BBE32B661B818FC8E05397BE0A0AB906
10.中國工業與信息化部 (2023)。http://www.miit-eidc.org.cn/index.html
11.中華人民共和國工業和資訊化部, 中華人民共和國財政部, 中華人民共和國商務部, 中華人民共和國海關總署, 國家品質監督檢驗檢疫總局 (2017),乘用車企業平均燃料消耗量與新能源汽車積分並行管理辦法。https://www.gov.cn/xinwen/2017-09/28/content_5228217.htm
12.日本國土交通省 (2020),乗用車の2030年度燃費基準に関する最終とりまとめ。https://www.mlit.go.jp/report/press/jidosha10_hh_000234.html
13.日本國土交通省 (2021),自動車燃費性能に係る評価方法等の技術的基準。https://www.mlit.go.jp/common/001303219.pdf
14.日本國土交通省 (2022),自動車燃費目標基準。https://www.mlit.go.jp/jidosha/jidosha_fr10_000005.html
15.台灣電力公司,重要電業經營績效。 https://www.taipower.com.tw/2289/2363/2373/2379/10449/normalPost
16.行政院國家發展委員會 (2022),臺灣2050淨零排放路徑。https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811
17.國家市場監督管理總局、國家標準化管理委員會 (2019),GB 27999-2019 乘用車燃料消耗量評價方法及指標。https://std.samr.gov.cn/gb/search/gbDetailed?id=9B70DDA94012A80CE05397BE0A0A84AC
18.經濟部 (2016),能源管理法,法務部全國法規資料庫。https://law.moea.gov.tw/LawContent.aspx?id=FL011817
19.經濟部 (2022),車輛容許耗用能源標準及檢查管理辦法,全國法規資料庫。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0130009
20.韓國環境部 (2024),關於汽車平均能耗效率標準、溫室氣體排放標準等的應用與管理的通知。https://www.law.go.kr/행정규칙/자동차%20평균에너지소비효율기준·온실가스%20배출허용기준%20및%20기준의%20적용·관리%20등에%20관한%20고시