| 研究生: |
曾華安 Tseng, Hwa-An |
|---|---|
| 論文名稱: |
一個十二位元每秒取樣五千萬次的時間交錯型逐漸趨近式類比數位轉換器 A 12-bit 50-MS/s Time-Interleaved Successive-Approximation Analog-to-Digital Converter |
| 指導教授: |
張順志
Chang, Soon-Jyh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 殘值超取樣 、時間交錯型 、逐漸趨近式 、類比數位轉換器 |
| 外文關鍵詞: | residue oversampling, time interleaving, successive-approximation, SAR, analog-to-digital converter, ADC |
| 相關次數: | 點閱:262 下載:24 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個十二位元每秒取樣五千萬次的時間交錯型逐漸趨近式類比數位轉換器。與過去的高解析度時間交錯型類比數位轉換器相比,本研究提出的使用殘值超取樣技術的時間交錯型類比數位轉換器架構,可以藉由提高各單一子通道類比數位轉換器的線性度,來改善整體時間交錯型類比數位轉換器的線性度。此架構不僅可以省去校正參考準位類比數位轉換器的使用,更可以降低校正電路的複雜度。
本設計以台積電90奈米CMOS標準1P9M製程實作晶片,核心電路面積佔685μm × 360μm。量測結果顯示,在0.9伏特電源供電,輸入頻率為五十萬赫茲,每秒分別取樣五千萬次及二千五百萬次的操作速度下,訊號雜訊比之最大值分別為60.01及60.58分貝,可推得每次資料轉換所消耗的能量分別為20.24及24.28飛焦耳。
This thesis presents a 12-bit 50-MS/s time-interleaved (TI) successive-approximation (SA; SAR) analog-to-digital converter (ADC). The proposed architecture, which combines the residue oversampling technique with the time-interleaved scheme, can improve the linearity of the overall time-interleaved ADC by enhancing the linearity of each sub-channel ADC. In comparison with early proposed high-resolution TI-SAR ADCs, this architecture can not only remove the reference sub-channel ADC utilized for calibration but also reduce the complexity of calibration circuit.
The proof-of-concept prototype was fabricated in TSMC 90-nm CMOS standard 1P9M process where the core area occupies 680μm × 360μm. With 0.9V supply and 0.5MHz input frequency, the measured peak signal-to-noise and distortion ratios (SNDRs) are 60.01dB at sampling rate of 50MS/s, and 60.58dB at sampling rate of 25MS/s. The corresponding figure-of-merits (FoMs) are 20.24fJ/conversion-step and 24.28fJ/conversion-step, respectively.
[1] P. Harpe, A. Baschirotto, and K. A. A. Makinwa, High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing. Heidelberg, Germany: Springer, 2015.
[2] B. Murmann, “ADC Performance Survey 1997-2018,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
[3] W. C. Black, and D. A. Hodges, “Time-interleaved converter arrays,” IEEE J. Solid-State Circuits, vol. 15, no. 12, pp. 1022–1029, Dec. 1980.
[4] C.-W. Hsu, S.-J. Chang, C.-P. Huang, L.-J. Chang, Y.-T. Shyu, C.-H. Hou, H.-A. Tseng, C.-Y. Kung, and H.-J. Hu, “A 12-b 40-MS/s calibration-free SAR ADC,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 3, pp. 881–890, Mar. 2018.
[5] B. Razavi, “Design considerations for interleaved ADCs,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1806–1817, Aug. 2013.
[6] N. Kurosawa, K. Maruyama, H. Kobayashi, H. Sugawara, and K. Kobayashi, “Explicit analysis of channel mismatch effects in time-interleaved ADC systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 3, pp. 261–271, Mar. 2001.
[7] N. Kurosawa, H. Kobayashi, and K. Kobayashi, “Channel linearity mismatch effects in time-interleaved ADC systems,” in Proc. ISCAS, 2001, pp. 420–423.
[8] W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13µm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization,” in IEEE ISSCC Dig. Tech. Papers, 2009, pp. 82–84.
[9] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 1996.
[10] B. Razavi, Principles of Data Conversion System Design. New York, USA: Wiley-IEEE Press, 1995.
[11] R. V. D. Plassche, CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters, 2nd ed. Boston, USA: Kluwer Academic Publishers, 2003.
[12] N.-Y. Wang, “A 10-bit 110-MS/s SAR ADC with 2.5-bit predictive capacitor switching procedure,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2011.
[13] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed. New York, USA: Wiley, 2013.
[14] P. E. Allen, and D. R. Holberg, CMOS Analog Circuit Design, 3rd ed. New York, USA: Oxford University Press, 2011.
[15] Y.-T. Huang, “A 6-bit 220-MS/s successive-approximation analog-to-digital converter,” M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2008.
[16] C.-Y. Liou, and C.-C. Hsieh, “A 2.4-to-5.2fJ/conversion-step 10b 0.5-to-4MS/s SAR ADC with charge-averaging switching DAC in 90nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 280–281.
[17] H.-Y. Tai, Y.-S. Hu, H.-W. Chen, and H.-S. Chen, “A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 196–197.
[18] F. H. Irons, and D. M. Hummels, “The modulo time plot —A useful data acquisition diagnostic tool,” IEEE Trans. Instrum. Meas., vol. 45, no. 3, pp. 734–738, Jun. 1996.
[19] J. L. McCreary, and P. R. Gray, “All-MOS charge distribution analog-to-digital conversion techniques–part I,” IEEE J. Solid-State Circuits, vol. SSC10, no. 6, pp. 371379, Dec. 1975.
[20] B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250Ms/s 2× interleaved fully dynamic pipelined SAR ADC in 40nm digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2014, pp. 466–468.
[21] B. Verbruggen, K. Deguchi, B. Malki, and J. Craninckx, “ A 70dB SNDR 200MS/s 2.3mW dynamic pipelined SAR ADC in 28nm digital CMOS,” in IEEE Symp. VLSI Circuits Dig. Tech. Papers, 2014, pp. 1–2.
[22] Y. Zhu, C.-H. Chan, U.-F. Chio, S.-W. Sin, S.-P. U, R. P. Martins, and F. Maloberti, “Split-SAR ADCs: Improved linearity with power and speed optimization,” IEEE Trans. VLSI Syst., vol. 22, no. 2, pp. 372–383, Feb. 2014.
[23] A.-H. Chang, H.-S. Lee, and D. Boning, “A 12b 50MS/s 2.1mW SAR ADC with redundancy and digital background calibration,” in Proc. IEEE ESSCIRC, 2013, pp. 109–112.
[24] R. Kapustsa, J. Shen, S. Decker, H. Li, and E. Ibaragi, “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2013, pp. 472–473.
[25] R. V. D. Plassche, “Dynamic element matching for high-accuracy monolithic D/A converters,” IEEE J. Solid-State Circuits, vol. 11, no. 6, pp. 795–800, Dec. 1976.
[26] W. Kester, Data Conversion Handbook. Burlington, MA, USA: Newnes, 2005.
[27] M.Gustavsson, J. Wikner, and N.Tan, CMOS Data Converters for Communications. Boston, USA: Kluwer Academic Publishers, 2000.
[28] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, Y.-T. Liu, and S.-J. Chang, “A 9-bit 150-MS/s subrange ADC based on SAR architecture in 90-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 570–581, Mar. 2013.
[29] R.-C. Liu, C.-Y. Lin, E. Harris, S. Merchant, S. W. Downey, G. Weber, N. A. Ciampa, W. Tai, W. Y. C. Lai, M. D. Morris, J. E. Bower, J. F. Miner, J. Frackoviak, W. Mansfield, D. Barr, R. Keller, C.-P. Chang, C.-S. Pai, S. N. Rogers, and R. Gregor, “Single mask metal-insulator-metal (MIM) capacitor with copper damascene metallization for sub-0.18μm mixed mode signal and system-on-a-chip (SoC) applications,” in Proc. IEEE IITC, 2000, pp. 111–113.
[30] V. Tripathi, and B. Murmann, “Mismatch characterization of small metal fringe capacitors,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 8, pp. 2236–2242, Aug. 2014.
[31] G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu, and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” in IEEE A-SSCC, 2013, pp. 289–292.
[32] S. Haenzsche, S. Henker, and R. Schuffny, “Modelling of capacitor mismatch and non-linearity effects in charge redistribution SAR ADCs,” in Proc. IEEE MIXDES, 2010, pp. 300–305.
[33] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, 2010, pp. 386–387.
[34] K. Poulton, R. Neff, B. Setterberg, B. Wuppermann, T. Kopley, R. Jewett, J. Pernillo, C. Tan, and A. Montijo, “A 20GS/s 8b ADC with a 1MB memory in 0.18µm CMOS,” in IEEE ISSCC Dig. Tech. Papers, 2003, pp. 318–320.
[35] X. Gao, E. A. M. Klumperink, and B. Nauta, “Advantages of shift registers over DLLs for flexible low jitter multiphase clock generation,” IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 55, no. 3, pp. 244–248, Mar. 2008.
[36] Y. Zhu, C.-H. Chan, S.-P. U, and R. P. Martins, “An 11b 900 MS/s time-interleaved sub-ranging pipelined-SAR ADC,” in Proc. ESSCIRC, 2014, pp. 211–214.
[37] O. Semenov, A. Vassighi, and M. Sachdev, “Leakage current in sub-quarter micron MOSFET: A perspective on stressed delta-IDDQ testing,” J. Electron. Test., vol. 19, no. 19, pp. 341–352, Jun. 2003.
[38] P. M. Figueiredo, and J. C. Vitla, ‘‘Kickback noise reduction techniques for CMOS latched comparators,’’ IEEE Trans. Circuits Syst. II, Expr. Briefs, vol. 53, no. 7, pp. 541–545, Jul. 2006.
[39] M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self-calibrating dynamic comparator for high-speed ADCs,” in IEEE A-SSCC, 2008, pp. 554–557.
[40] Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-step capacitor-swapping SAR ADC in 110-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 1, pp. 10–18, Jan. 2015.
[41] L. Deng, C. Yang, M. Zhao, Y. Liu, and X. Wu, “A 12-bit 200KS/s SAR ADC with a mixed switching scheme and integer-based split capacitor array,” in IEEE NEWCAS, 2013, pp. 1–4.
[42] V. Hariprasath, J. Guerber, S.-H. Lee, and U. Moon, “Merged capacitor switching based SAR ADC with highest switching energy-efficiency,” Electron. Lett., vol. 46, no. 9, pp. 620–621, Apr. 2010.
[43] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[44] H. Zumbahlen, “Staying Well Grounded,” Analog Dialogue, vol. 46, no. 6, Jun. 2012.
[45] C.-Y. Lin, and T.-C. Lee, “A 12-bit 210-MS/s 2-times interleaved pipelined-SAR ADC with a passive residue transfer technique,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 7, pp. 929–938, Jul. 2016.
[46] H.-W. Kang, H.-K. Hong, W. Kim, and S.-T. Ryu, “ A time-interleaved 12-b 270-MS/s SAR ADC with virtual-timing-reference timing-skew calibration scheme,” IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2584–2594, Sep. 2018.