| 研究生: |
王長鵬 Wang, Chang-Peng |
|---|---|
| 論文名稱: |
適用於高解析度即時視訊處理之H.264/AVC去區塊效應濾波器架構設計 An Architecture Design of De-blocking Filter in H.264/AVC for Real-time High Definition Video Processing |
| 指導教授: |
陳中和
Chen, Chung-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 區塊效應 、邊緣濾波器 、多媒體處理器 |
| 外文關鍵詞: | edge filter, blocking artifact, media processor |
| 相關次數: | 點閱:152 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文裡,我們針對新視訊壓縮標準-H.264內嵌的適應性去區塊效應濾波器(in-loop adaptive de-blocking filter)-提供了一個高效能、五級管線化的架構。我們所提供的硬體架構,在處理一個巨集區塊(macro-block),包含一個16x16的亮度區塊(luminance block)及兩個8x8的彩度區塊(chrominance block),時僅需60個時脈週期。和先前所提出的硬體架構相比,我們的設計能在33MHz的運作時脈下,即時的處理1080P (1920 x 1080 @ 30fps) 的高解析度視訊影像。透過臺灣積體電路公司(TSMC)所提供的0.18 um標準元件庫(cell library)實現後,我們的設計能適當的運作在133 MHz的時脈下。現今的系統單晶片(system-on-chip)整合設計裡,系統匯流排(system bus)頻寬不足的問題急待解決,我們在設計之初,便將匯流排頻寬問題納入設計考量,因此,我們的所提供的數位矽智產(IP)將更有利於系統整合。
This thesis presents a high performance five-stage pipelined architecture of the adaptive de-blocking filter adopted in the H.264/AVC codec. Using the proposed architecture, the processing cycles of each macro-block including one 16x16 luminance and two 8x8 chrominance blocks are only 60. Compared with previous works, our design can easily achieve the real-time processing with 1080P HD-DVD (1920x1080@30fps) resolution video sequences while the working frequency is only 33 MHz. Implemented with the 0.18 um technology, the design can operate at 133 MHz properly. In a modern system-on-chip design, the system bus bandwidth is a major problem. We had taken the bus utilization problem into consideration, and therefore our design is easier to be integrated into a multiple IPs system than previous works.
[1] Draft ITU-T Recommendation and Final draft International Standard of Joint Video Specification(ITU-T Rec. H.246/ISO/IEC 14496-10 AVC), Mar. 2003.
[2] TW, GJ. S, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. on Circuits and System for Video Technology, vol. 13, issue 7, pp. 560-576, July 2003.
[3] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira, T. Stockhammer, and T. Wedi, “Video coding with H.264/AVC: tools, performance, and complexity,” IEEE Circuits and Systems Magazine, vol. 4, issue 1, pp. 7-28, 2004.
[4] P. List, A. Joch, J. Lainema, G. Bjontegaard, and Karczewicz, “Adaptive deblocking filter,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, issue 7, pp. 614-619, July 2003.
[5] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/AVC baseline profile decoder complexity analysis,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, issue 7, pp. 704-716, July 2003.
[6] M. Alvarez, E. Salami, A. Ramirez, and M. Valero “A performance characterization of high definition digital video decoding using H.264/AVC,” Ministry of Science and Technology of Spain, the European Union (FEDER funds) under the contract with IBM, 2005.
[7] Y. W. Huang, T. W. Chen, B. Y. Hsieh, T. C. Wang, T. H. Chang, and L. G. Chen, “Architecture design for deblocking filter in H.264/AVC,” International Conference on Multimedia and Expo (ICME ’03), vol. 1, pp. 6-9, July 2003.
[8] B. Sheng, W. Gao, and D. Wu, “An implemented architecture of deblocking filter for H.264/AVC,” International Conference on Image Processing (ICIP’04), vol. 1, pp. 665-668, 24-27 Oct. 2004.
[9] L. Li, S. Goto, and T. Ikenaga, “An efficient deblocking filter architecture with 2-dimensional parallel memory for H.264/AVC,” Asia and South Pacific Design Automation Conference (ASPDAC’05), vol. 1, pp. 623-626, 18-21 Jan 2005.
[10] S. C. Chang, W. H. Peng, S. H. Wang, and T. Chiang, “A platform based bus-interleaved architecture for de-blocking filter in H.264/MPEG-4 AVC,” IEEE Trans. On Consumer Elecronics, vol. 51, issue 1, pp. 249-255, 2005.
[11] T. M. Liu, W. P. Lee, T. A. Lin, and C. Y. Lee, “A memory-efficient deblocking filter for H.264/AVC video coding,” International Symposium on Circuits and Systems (ISCAS’05), vol. 3, pp. 2140-2143, 23-26 May 2005.
[12] S. Y. Shih, C. R. Chang, and Y. L. Lin, “A near optimal deblocking filter for H.264 advanced video coding,” Asia and South Pacific Design Automation Conference (ASPDAC’06), pp. 170-175, 24-27 Jan. 2006.
[13] M. Sima, Y. Zhou, and W. Zhang, “An efficient architecture for adaptive deblocking filter of H.264/AVC video coding,” IEEE Trans. On Consumer Electronics, vol. 50, issue 1, pp. 292-296, 2004.
[14] G. Zheng, and L. Yu, “An efficient architecture design for deblocking loop filter,” Picture Coding Symposium, 2004.
[15] Y. H. Lim, K. Y. Min, and J. W. Chong, “An efficient architecture of deblocking filter in H.264/AVC for real-time video processing,” 47th Int’l Symposium ELMAR’05, pp. 45-48, 08-10 June 2005.
[16] C. M. Chen, and C. H. Chen, “An efficient VLSI architecture for edge filtering in H.264/AVC,” the IASTED Conference on Circuits, Signals, and Systems, 2005.
[17] C. M. Chen, and C. H. Chen, “An efficient architecture for deblocking filter in H.264/AVC video coding,” the IASTED International Conference on Communication, Internet and Information Technology, 2005.
[18] Y. H. Su, “A progressive design flow and its application to H.264 BP RDO encoder VLSI design,” M.S. thesis, Institute of Computer Science and Information Engineering, National Cheng-Kung University, July 2006.
[19] Y. H. Wu, “H.264 inter prediction architecture design with rate-distortion optimization,” M.S. thesis, Institute of Computer and Communication Engineering, National Cheng-Kung University, July 2006.
[20] I. E. G. Richardson, “H.264 and MPGE-4 video compression-video coding for next-generation multimedia,” Wiley, First Edition, 2004.
[21] V. Bhaskaran, K. Konstantinides, H. P. Laboratories, “Image and video compression standards-Algorithms and architectures,” Second Edition, Kluwer Academic, 2003.
[22] JVT H.264/AVC Reference Software JM,
available: http://iphome.hhi.de/suehring/tml/.