簡易檢索 / 詳目顯示

研究生: 賴桐賢
Lai, Tong-Sian
論文名稱: 腹主動脈窄縮對豬的心臟肥大的影響
The effect of Abdominal Aortic Coarctation on Cardiac Hypertrophy in A Porcine Model
指導教授: 江美治
Jiang, Meei-Jyh
共同指導教授: 林寶彥
Lin, Pao-Yen
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 62
中文關鍵詞: 心臟衰竭心臟肥大腹主動脈瘤
外文關鍵詞: Heart failure, Cardiac hypertrophy, Abdominal Aortic Aneurysm
相關次數: 點閱:126下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去數十年來,心血管疾病一直是位居世界前三大死因之一,其中心臟衰竭的成長速度更是逐年上升。心臟衰竭的定義為當心臟功能受損且無法持續提供身體代謝所需的一種病理狀態。心臟肥大,是指當心臟受到外來刺激時,心肌細胞為了適應以及抵抗外力而透過增加細胞本身的長度或寬度來進一步提供心臟更強的推動力和減低外力在心壁造成的張力,但它常常演進為心臟衰竭。引起心臟肥大的主要因素是機械力刺激的參與而誘導心肌細胞改變長度,其中機械力的來源可分為兩種,分別是壓力過度承載以及體積過度承載。左心室肥厚的主要成因是壓力過度承載所造成的,且往往到最後都會走向心衰竭。在我們先前的研究結果中已經成功建立透過在蘭嶼迷你豬的腹主動脈進行窄縮而誘導腹主動脈瘤(AAA)形成的模型。因此我們的假設是:在腹主動脈進行一個較長時間的窄縮會增加主動脈的阻力,進一步導致左心室的壓力過度承載,最終導致心臟衰竭的發生。一開始,在血壓測量的部分我們同時使用血壓帶與veriQ transit time flow系統進行血壓紀錄。在血壓帶的測量結果中,收縮壓以及舒張壓在窄縮12周的組別都有顯著上升。我們亦使用veriQ transit time flow的系統測量頸動脈及股動脈的血壓,頸動脈的血壓在窄縮後並無顯著上升,而股動脈血壓則是在窄縮後脈壓皆呈現下降趨勢,且在窄縮後第8周有顯著差異。為了檢驗心臟功能在腹主動脈窄縮(AAC)後是否受到影響,我們透過veriQ transit time flow系統分析了心跳速率(HR)、心搏輸出量(SV)以及心輸出量(CO)並使用Doppler Echocardiography分析左心室的短軸縮短率(FS)。其結果顯示窄縮組的心臟功能與對照組並無顯著差異,但是在窄縮12周的組別,顯示心搏輸出量呈現下滑的趨勢,相反的,心跳速率則有增加的趨勢。初步的結果顯示,左心室的短軸縮短率在窄縮12周組較對照組有下降的趨勢。為了進一步分析腹主動脈窄縮是否會誘導心臟肥大,我們對心臟重量以及心室壁(左心室、心室間隔、右心室)的厚度進行了測量分析。結果顯示,窄縮組的心臟重量以及心室壁的厚度(皆以右心室為基準)與對照組並無顯著差異。進一步以蘇木素-伊紅(H&E)染色、麥胚凝集素(WGA)和肌凝蛋白重鏈(MHC)免疫螢光染色偵測心臟細胞是否肥大。結果顯示,心肌細胞的截面積以及細胞核密度上並無顯著差異。此外,Masson’s trichrome的染色結果顯示窄縮12周並未導致左心室的纖維化。在心臟肥大相關的指標蛋白部分,我們偵測了包含心室肌凝蛋白輕鏈2(MLC2v)的磷酸化以及Rho相關激酶(ROCK)的活化。結果並沒有檢測到顯著差異,但ROCK的活化在窄縮後12周有上升的趨勢。為了檢驗腹主動脈窄縮是否誘發心室的重塑反應,我們對熱休克蛋白(HSP)的家族成員(包含HSP40、HSP70和HSP90)進行基因表達的分析。結果顯示在窄縮後12周,HSP40 mRNA顯著上升,HSP70與HSP90則無明顯變化。綜合上述結果,腹主動脈窄縮12周不僅會造成血壓的上升,並開始影響心臟功能。若加長腹主動脈窄縮的時間應可偵測到心臟肥大的顯著變化。

    Cardiovascular disease is among the top three causes of mortality in the world, with heart failure representing the fastest growing subclass over the past decade. Heart failure is defined as the pathologic state of impaired cardiac function rendering the heart unable to maintain an output sufficient for the metabolic need of the body. Cardiac hypertrophy in which myocytes grow in length and/or width as a means of increasing cardiac pump function and decreasing ventricular wall tension often precedes heart failure. A major contributing factor for cardiac hypertrophy is mechanical stress which induces cardiomyocytes to grow in length upon the pressure or volume overload. Left ventricular hypertrophy (LVH) is the major consequence of pressure-overload and often leads to heart failure. Our laboratory has established a coarctation-induced abdominal aortic aneurysm model by surgically narrowing an infrarenal abdominal aortic segment of Lanyu mini pigs. We hypothesized that prolonged coarctation of the abdominal aorta increases aortic resistance, causes pressure overload of the left ventricle, and eventually leads to heart failure. Blood pressure (BP) was measured with both cuff method and veriQ transit time flow system. Using cuff method, both systolic and diastolic BP increased significantly at 12 weeks post-coarctation. Using transit time flow system, BP was measured at both carotid and femoral arteries. The BP of the carotid artery did not change significantly after coarctation whereas the pulse pressure of the femoral artery exhibited the trend to decrease and was significant at 8 weeks post-coarctation. To examine whether abdominal aorta coarctation (AAC) affects cardiac functions, we analyzed heart rate, stroke volume and cardiac output by transit time flow system and fractional shortening by Doppler echocardiography. No significant differences in stroke volume, heart rate or cardiac output were detected between the AAC and sham groups, but the 12w-AAC group tended to exhibit decreased stroke volume and increased heart rate. Preliminary results showed that 12w-AAC group exhibited decreased fractional shortening compared to sham group. To examine whether AAC induces cardiac hypertrophy, heart weight, wall thickness of the LV, right ventricle (RV), and the interventricular septum were measured. No significant difference was detected with apparent increases in the septum wall thickness (normalized with the RV wall) in the 12w-AAC group. Cellular hypertrophy was assessed with hematoxylin-and-eosin staining, Wheat Germ Agglutinin (WGA), and myosin heavy chain (MHC) immunofluorescence. No change in the cardiomyocyte cross-sectional area or nuclear density was detected. In addition, no tissue fibrosis in the LV was detected with masson’s trichrome staining. Cardiac hypertrophy markers, including phosphorylation of the ventricular myosin light chain 2 (MLC2v) and the activation of Rho-associated kinases (ROCK), were also examined. No significant difference was detected but ROCK activation tended to increase in the 12w-AAC group. To examine whether cardiac remodeling occurs after AAC, gene expression of the heat shock protein (HSP) family members, HSP40, HSP70, and HSP90, was examined. HSP40 mRNA was up-regulated in the 12w-AAC group while the other two did not change. Taken together, these results show that prolonged AA coarctation for 12 weeks increases blood pressure and starts to affect cardiac function. Longer time period of AA coarctation may be needed to detect significant changes associated with cardiac hypertrophy.

    Chinese abstract…………………………………………01 English abstract………………………………………….03 Introduction……………………………………………...05 Aim of this study………………………………………...10 Materials and Methods…………………………………..11 Results…………………………………………………...33 Discussion…………………………………………….....38 References……………………………………………….42 Figures…………………………………………………...47

    1. Alwan A, World Health Organization. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011.
    2. Jessup M, Brozena S. Heart failure. N Engl J Med 2003,348:2007-2018.
    3. McMurray JJ, Pfeffer MA. Heart failure. Lancet 2005,365:1877-1889.
    4. Cleland JG, Swedberg K, Poole-Wilson PA. Successes and failures of current treatment of heart failure. Lancet 1998,352 Suppl 1:SI19-28.
    5. Massie BM, Shah NB. Evolving trends in the epidemiologic factors of heart failure: rationale for preventive strategies and comprehensive disease management. Am Heart J 1997,133:703-712.
    6. Najafi F, Jamrozik K, Dobson AJ. Understanding the 'epidemic of heart failure': a systematic review of trends in determinants of heart failure. Eur J Heart Fail 2009,11:472-479.
    7. Bocchi EA, Braga FG, Ferreira SM, Rohde LE, Oliveira WA, Almeida DR, et al. [III Brazilian Guidelines on Chronic Heart Failure]. Arq Bras Cardiol 2009,93:3-70.
    8. Liao L, Allen LA, Whellan DJ. Economic burden of heart failure in the elderly. Pharmacoeconomics 2008,26:447-462.
    9. Shamsham F, Mitchell J. Essentials of the diagnosis of heart failure. Am Fam Physician 2000,61:1319-1328.
    10. Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol 2004,43:317-327.
    11. Narula J, Hajjar RJ, Dec GW. Apoptosis in the failing heart. Cardiol Clin 1998,16:691-710, ix.
    12. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003,111:1497-1504.
    13. He J, Ogden LG, Bazzano LA, Vupputuri S, Loria C, Whelton PK. Risk factors for congestive heart failure in US men and women: NHANES I epidemiologic follow-up study. Arch Intern Med 2001,161:996-1002.
    14. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990,322:1561-1566.
    15. Morisco C, Sadoshima J, Trimarco B, Arora R, Vatner DE, Vatner SF. Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. Am J Physiol Heart Circ Physiol 2003,284:H1043-1047.
    16. Lips DJ, deWindt LJ, van Kraaij DJ, Doevendans PA. Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. Eur Heart J 2003,24:883-896.
    17. Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 2005,111:2837-2849.
    18. Bekeredjian R, Grayburn PA. Valvular heart disease: aortic regurgitation. Circulation 2005,112:125-134.
    19. Peterson KL. Pressure overload hypertrophy and congestive heart failure. Where is the "Achilles' heel"? J Am Coll Cardiol 2002,39:672-675.
    20. Maron BJ. Hypertrophic cardiomyopathy. Lancet 1997,350:127-133.
    21. Burlew BS, Weber KT. Connective tissue and the heart. Functional significance and regulatory mechanisms. Cardiol Clin 2000,18:435-442.
    22. Jalil JE, Doering CW, Janicki JS, Pick R, Shroff SG, Weber KT. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 1989,64:1041-1050.
    23. Jalil JE, Doering CW, Janicki JS, Pick R, Clark WA, Abrahams C, et al. Structural vs. contractile protein remodeling and myocardial stiffness in hypertrophied rat left ventricle. J Mol Cell Cardiol 1988,20:1179-1187.
    24. Vikstrom KL, Bohlmeyer T, Factor SM, Leinwand LA. Hypertrophy, pathology, and molecular markers of cardiac pathogenesis. Circ Res 1998,82:773-778.
    25. Gradman AH, Alfayoumi F. From left ventricular hypertrophy to congestive heart failure: management of hypertensive heart disease. Prog Cardiovasc Dis 2006,48:326-341.
    26. Harada K, Komuro I, Shiojima I, Hayashi D, Kudoh S, Mizuno T, et al. Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation 1998,97:1952-1959.
    27. Behar S, Reicher-Reiss H, Abinader E, Agmon J, Barzilai J, Friedman Y, et al. Long-term prognosis after acute myocardial infarction in patients with left ventricular hypertrophy on the electrocardiogram. SPRINT Study Group. Am J Cardiol 1992,69:985-990.
    28. Levy D, Anderson KM, Savage DD, Kannel WB, Christiansen JC, Castelli WP. Echocardiographically detected left ventricular hypertrophy: prevalence and risk factors. The Framingham Heart Study. Ann Intern Med 1988,108:7-13.
    29. Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ. Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 2004,147:218-223.
    30. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 1998,93:215-228.
    31. Komuro I, Yazaki Y. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 1993,55:55-75.
    32. Conrad MC, Green HD. Hemodynamics of Large and Small Vessels in Peripheral Vascular Disease. Circulation 1964,29:847-853.
    33. Ventura HO, Taler SJ, Strobeck JE. Hypertension as a hemodynamic disease: the role of impedance cardiography in diagnostic, prognostic, and therapeutic decision making. Am J Hypertens 2005,18:26S-43S.
    34. Meissner MH, Moneta G, Burnand K, Gloviczki P, Lohr JM, Lurie F, et al. The hemodynamics and diagnosis of venous disease. J Vasc Surg 2007,46 Suppl S:4S-24S.
    35. Crick SJ, Sheppard MN, Ho SY, Gebstein L, Anderson RH. Anatomy of the pig heart: comparisons with normal human cardiac structure. J Anat 1998,193 ( Pt 1):105-119.
    36. Lin PY, Wu YT, Lin GC, Shih YH, Sampilvanjil A, Chen LR, et al. Coarctation-induced degenerative abdominal aortic aneurysm in a porcine model. J Vasc Surg 2013,57:806-815 e801.
    37. Sundstrom J, Lind L, Arnlov J, Zethelius B, Andren B, Lithell HO. Echocardiographic and electrocardiographic diagnoses of left ventricular hypertrophy predict mortality independently of each other in a population of elderly men. Circulation 2001,103:2346-2351.
    38. Williams LK, Frenneaux MP, Steeds RP. Echocardiography in hypertrophic cardiomyopathy diagnosis, prognosis, and role in management. Eur J Echocardiogr 2009,10:iii9-14.
    39. Kansal S, Roitman D, Sheffield LT. Interventricular septal thickness and left ventricular hypertrophy. An echocardiographic study. Circulation 1979,60:1058-1065.
    40. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest 2011,121:4393-4408.
    41. Tracy RE, Sander GE. Histologically measured cardiomyocyte hypertrophy correlates with body height as strongly as with body mass index. Cardiol Res Pract 2011,2011:658958.
    42. Weber KT, Brilla CG. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991,83:1849-1865.
    43. Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. J Clin Invest 2010,120:3520-3529.
    44. Rottbauer W, Wessels G, Dahme T, Just S, Trano N, Hassel D, et al. Cardiac myosin light chain-2: a novel essential component of thick-myofilament assembly and contractility of the heart. Circ Res 2006,99:323-331.
    45. Seguchi O, Takashima S, Yamazaki S, Asakura M, Asano Y, Shintani Y, et al. A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart. J Clin Invest 2007,117:2812-2824.
    46. Ishikawa Y, Kurotani R. Cardiac myosin light chain kinase: a new player in the regulation of myosin light chain in the heart. Circ Res 2008,102:516-518.
    47. Warren SA, Briggs LE, Zeng H, Chuang J, Chang EI, Terada R, et al. Myosin light chain phosphorylation is critical for adaptation to cardiac stress. Circulation 2012,126:2575-2588.
    48. Loirand G, Guerin P, Pacaud P. Rho kinases in cardiovascular physiology and pathophysiology. Circ Res 2006,98:322-334.
    49. Phrommintikul A, Tran L, Kompa A, Wang B, Adrahtas A, Cantwell D, et al. Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am J Physiol Heart Circ Physiol 2008,294:H1804-1814.
    50. Shichi D, Arimura T, Ishikawa T, Kimura A. Heart-specific small subunit of myosin light chain phosphatase activates rho-associated kinase and regulates phosphorylation of myosin phosphatase target subunit 1. J Biol Chem 2010,285:33680-33690.
    51. Shimokawa H, Tomoike H, Nabeyama S, Yamamoto H, Araki H, Nakamura M, et al. Coronary artery spasm induced in atherosclerotic miniature swine. Science 1983,221:560-562.
    52. Kandabashi T, Shimokawa H, Mukai Y, Matoba T, Kunihiro I, Morikawa K, et al. Involvement of rho-kinase in agonists-induced contractions of arteriosclerotic human arteries. Arterioscler Thromb Vasc Biol 2002,22:243-248.
    53. Okamoto R, Kato T, Mizoguchi A, Takahashi N, Nakakuki T, Mizutani H, et al. Characterization and function of MYPT2, a target subunit of myosin phosphatase in heart. Cell Signal 2006,18:1408-1416.
    54. Benjamin IJ, McMillan DR. Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 1998,83:117-132.
    55. McLemore EC, Tessier DJ, Thresher J, Komalavilas P, Brophy CM. Role of the small heat shock proteins in regulating vascular smooth muscle tone. J Am Coll Surg 2005,201:30-36.
    56. Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 1995,11:441-469.
    57. Li Z, Srivastava P. Heat-shock proteins. Curr Protoc Immunol 2004,Appendix 1:Appendix 1T.
    58. Latchman DS. Heat shock proteins and cardiac protection. Cardiovasc Res 2001,51:637-646.
    59. de Simone G, Devereux RB, Koren MJ, Mensah GA, Casale PN, Laragh JH. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation 1996,93:259-265.
    60. Sundstrom J, Lind L, Vessby B, Andren B, Aro A, Lithell H. Dyslipidemia and an unfavorable fatty acid profile predict left ventricular hypertrophy 20 years later. Circulation 2001,103:836-841.
    61. Perlini S, Chung ES, Aurigemma GP, Meyer TE. Alterations in early filling dynamics predict the progression of compensated pressure overload hypertrophy to heart failure better than abnormalities in midwall systolic shortening. Clin Exp Hypertens 2013,35:401-411.
    62. Baig MK, Goldman JH, Caforio AL, Coonar AS, Keeling PJ, McKenna WJ. Familial dilated cardiomyopathy: cardiac abnormalities are common in asymptomatic relatives and may represent early disease. J Am Coll Cardiol 1998,31:195-201.
    63. Shimizu G, Hirota Y, Kawamura K. Empiric determination of the transition from concentric hypertrophy to congestive heart failure in essential hypertension. J Am Coll Cardiol 1995,25:888-894.
    64. Aoyagi T, Fujii AM, Flanagan MF, Arnold LW, Brathwaite KW, Colan SD, et al. Transition from compensated hypertrophy to intrinsic myocardial dysfunction during development of left ventricular pressure-overload hypertrophy in conscious sheep. Systolic dysfunction precedes diastolic dysfunction. Circulation 1993,88:2415-2425.
    65. Litwin SE, Katz SE, Weinberg EO, Lorell BH, Aurigemma GP, Douglas PS. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation 1995,91:2642-2654.
    66. Oka T, Komuro I. Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure. Circ J 2008,72 Suppl A:A13-16.

    下載圖示 校內:2016-07-15公開
    校外:2016-07-15公開
    QR CODE